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unless n = jk, and

o gm
sk — k! (j!)k'i'

(e) Every delta functional can be obtained from the Bell generic delta
functional by specializing the values of the x;,. Thus every formula for the
Bell polynomials gives a formula for all conjugate sequence. For example,
from (b) one obtains

k
. k S
WLy = 3 () e <L LI (L 8,
j=0
where L is any delta functional and where L = L4 + x,4. Similarly, (c)
gives the conjugate polynomials of the sum of two (or more) delta functionals
in terms of the conjugate sequences of the summand.

6. AUTOMORPHISMS AND DERIVATIONS

Given two polynomial sequences p,(x) and ¢,(x), a frequently encountered
problem is that of determining a matrix of constants ¢, ; , which we call the
connection constants of p,(x) with g,(x), such that

qn(x) = ‘Z:, Cn,kpk(x)' (*)

In this section, we give a solution to this problem when the polynomial sequences
are of binomial type. The solution we propose takes a particularly simple
form in the umbral notation we now introduce. If r(x) = ,_, €;4* is a polynomial,
and p,(x) is a polynomial sequence, the umbral composition of r(x) with p,(x)
is the polynomial, written r(p(x)), and defined by

n

r(p(x)) = 3 cupul®).

k=0
If 7,(x) and p,(x) are two polynomial sequences, the umbral composition of
7,{x) with p,(x) is the polynomial sequence r,(p(x)). In this notation, () becomes

qﬂ(x) = rn(p(x))’

where 7,(x) = Y5_ a1

Umbral composition is simply the result of applying a suitable linear operator
to a polynomial sequence. In particular, if « is the linear operator on P defined
by ax® = p,(x) for n =0, 1, 2,..., then ar,(x) = r,(p(x)), and (*) becomes

n(*) = ary(%).
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Thus the constants ¢, , are determined once the polynomials 7,(x) = a7¢,(x)
are known,

We are therefore led to define an umbral operator as a linear operator « on P,
given by ax" = p,(x), where p,(x) is a sequence of binomial type. When we
wish to emphasize the delta functional L for which p,(x) is the associated
sequence, we write o, for a.

Before proceeding further, we recall some basic facts about adjoints of
linear operators. Let T be a linear operator mapping P into itself. The adjoint
T of T is the operator mapping P* into itself uniquely defined by

(THLY | p(x)y = <L | Tp(x)>

for all L € P* and all p(x) € P. The adjoint T* of a linear operator T on P
exists and is continuous. To see the latter, suppose L, is a sequence of linear
functionals converging to L. For any polynomial p(x), we have

(THL,) | p(x)y = Ly | Tp(*)),

and by the definition of convergence in P*, if » is large, this equals

(L | Tpx)y = <THLY | p(x))-

Thus T*(L,) converges to T*(L), and T™ is continuous.

On the other hand, suppose U is a linear operator mapping P* into itself.
Then the adjoint U* maps P** into itself. Thinking of P as a subspace of P**,
in general U* will not map P into itself. The sufficient condition to ensure
that U* maps polynomials to polynomials is the continuity of U. We have

PropOSITION 6.1. A linear operator mapping P* into itself is the adjoint
of a linear operator mapping P into itself if and only if it is continuous.

Proof. We have already seen that the adjoint of an operator mapping P
into itself is continuous. For the converse, suppose U is a continuous operator
mapping P* into itself. Since the sequence of powers 4* converges to zero,
so does the sequence U(A4*). Thus the function

R
=0 :

is a polynomial, and
(A¥ | pulx)> = CUAR) | &7
for all & = 0.
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If we define the operator ' mapping P into itself by Va® = p,(x), then

VLY L amy = (L | pofx)y
= (U(L) | a™, for all L e P*,

the last equality by the spanning argument for linear functionals. Thus V(L) =
U(L) for all L e P* and so I'* = U.

We return now to the main stream of this section. The skift of a polynomial
sequence p,(x) is the operator §, mapping P into itself, defined by 6p,(x) =
Prnsa(x). If po(x) is of binomial type, we say that 8 is an umbral shift. By 6, ,
we mean the umbral shift defined by the associated sequence for L.

Umbral operators and umbral shifts are related to automorphisms and
derivations of the umbral algebra. Recall that a derivation ¢ of the umbral
algebra is a linear operator such that §(LM) = (6L)M -+ L(6M).

In order to exhibit the aforementioned relationship, we require two lemmas.

Lemma 1. dny continuous automorphism of the umbral algebra maps delta
Junctionals to delta functionals.

Proof. Let 8 be a continuous automorphism of P*, and let L be a delta
functional. By Proposition 3.6, (L | 1> = 0 implies L* converges to zero.
The continuity of 8 implies that S(L") = B(L)" converges to zero, and another
application of Proposition 3.6 implies ¢B(L)|1> = 0. By Proposition 4.2,
the powers of L span P*, and thus so do the powers of B(L). The same proposition
implies S(L) is a delta functional.

LemMA 2. Let 0 be a derivation of the umbral algebra which is everywhere
defined, continuous, and onto. Then there is a delta functional L such that oI = e.

Proof. Since @ is onto, there is a linear functional L for which 8L = e.
Since & is a derivation, we infer that 8¢ = 0, hence, subtracting from L a constant
if necessary, we may assume that (L | 1) = 0. Now we expand L into a series
of powers of the generator a,4 4 @, 4% 4- --+, and since & is continuous, we
may apply it term by term to the series. Since 64" = nA"1 84, we have

€ = (a, + 2a,d + ) 94.

Thus the series (a; + 24,4 + -+*) is invertible and so a, # 0. That is,
{L|x> % 0and L is a delta functional.
We are now ready to prove

'THEOREM 5. (a) An operator « of P onto itself is an umbral operator if and
only if its adjoint o* is a continuous automorphism of the umbral algebra.

(b) An operator 6 of P into itself is an umbral shift if and only if its adjoint
0* is a continuous, everywhere defined derivation of the umbral algebra onto itself.
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Proof. (a) It is clear that the adjoint o* of an umbral operator « is linear,
continuous, one-to-one, and onto. Thus all that remains is to show that «*
preserves multiplication. Letting ax® — Dn(%), this follows from the spanning
argument and the following calculations:

CHMN) | ¥ = (MN | ax™y = (MN | p(x)>

=

I

(1) PL PN | oy

ke

-
k=
= {«

(i) <) | 8 ar (V) vty

0

“(M) a*(N) | am.

For the converse, suppose § is a continuous automorphism of the umbral
algebra. In view of Lemma 1, we may let p,(x) be the associated sequence
for the delta functional I — B7(A). Defining the umbral operator « by
ax”™ = p,(x), we have

CBELY 1oy = nl 8y = (LF | aam,

for all & and n. By the Expansion Theorem, the same identity holds for all
linear functionals M,

BM) T am)y = (M | awmy,

and thus by the spanning argument, B(M) = a*(M). Hence part (a) is proved.

(b) Let 0 be the umbral shift defined by 6pn(x) = p,.1(x), and suppose
Pa(%) is the associated sequence for L. We have seen that the adjoint of a linear
operator on P is continuous. Moreover,

<Lk Ianl(x)> = k<Lkh1 ]Pn(x)/\
and thus

CONLE) [ paw)> = RCIF1 | po()),

for all #, & > 0. Therefore, by the spanning argument OX(L*) = kL* and so
6* is an everywhere defined derivation, and is onto.

Conversely, let & be a continuous derivation of the umbral algebra onto
itself. By virtue of Lemma 2, we may let p,(x) be the associated sequence
for the delta functional L, with 9(L) = e. Then for k > 0, we have

L*] 0%pu(x)y = COL¥) | p(x)
= RCLF | po(x)> — Rk — 1)1 8y, ,

— RSy




124 ROMAN AND ROTA

By the uniqueness of the associated sequence, it follows that &*p,(x) =
Proi(x), and part (b) is proved.

Every continuous automorphism f of the umbral algebra is thus associated
with a unique delta functional L, namely, the delta functional whose associated
polynomials are p,(x) = B*«". Similarly, every continuous, everywhere defined
derivation f of the umbral algebra onto itself is associated with a unique delta
functional L, the one for which &* is the umbral shift of the associated sequence.
We shall stress this association by writing 8 = 8, and & — 8, . We remark
that 8,(L) = 4 and 9;(L) = e.

As an example, the simplest umbral operator is the substitution & — a®x®,
for a € K. Its adjoint maps A* to a*A*. The simplest shift is the map 6,,: " —
x"+1 and its adjoint &, is

COuL | p(x)) = <L | xp(x))-

We proceed to develop some corollaries of Theorem 5.

COROLLARY 1. (a) An umbral operator maps sequences of binomial type to
sequences of binomial type.

(b) If pu(x) and q,(x) are sequences of binomial type, and if o is an operator
defined by ap,(x) = q,(x), then « is an umbral operator.

(c)  If pu(x) is the associated sequence for L. and q,(x) is the associated sequence
Jor M, then the adjoint of the umbral operator ap,(x) = q,(x) satisfies «*(M) = L.

(d) If 8, is the derivation associated with the delta functional L, then
.M = 0 if and only if M = ae, for some a < K.

Proof. (a) Suppose o« is an umbral operator, and ¢,(x) is a sequence of
binomial type, with associated delta functional M. Then
)N MY | agu(x)> = (M* | o tag,(x))
= (M" | gu(x)> = K18, 5.
Thus ag,(x) is the associated sequence for the delta functional («=1)*M, and

is therefore of binomial type.

(b) A slight modification of the calculations in the proof of Theorem 5
will show that, if ap,(x) = ¢,(x), then a* is a continuous automorphism of
the umbral algebra, and thus « is an umbral operator.

(c) 'This follows by noticing that
(M) | pulx)> = (M | apy(x)>
= (M | gu%)> = 8,1 = (L | puls)>
foralln > 0.
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(d) Clearly, 0;(ae) = 0. The converse follows by observing that, for
p+{x) the associated sequence for L, 0 = (&, M | p,(x)) = (M | p,.1(%)>, and
thus M = ae for some a e K.

Part (a) of the preceding corollary implies that the composition of two umbral
operators is an umbral operator. This allows us to define a group operation
on delta functionals, which we call composition, as follows. If L and M are two
delta functionals with associated umbral operators a; and a,,, the composition
L= M is the delta functional associated with the umbral operator o o oy,

PropostrioN 6.2, If p.(x) and q,(x) are sequences of binomial type, being
the associated sequences for L and M, respectively, then q,(p(x)) is of binomial
tvpe, being the associated sequence for L o M.

Proof. Since ay: a" — p,(x) and ap: ¥ — g,(x), it follows that oy o oy,
A" — g,(p(x)). Since oy o @y is an umbral operator, g,(p(x)) is of binomial
tvpe, and is the associated sequence of Lo M by definition of composition
of delta functionals.

Since the umbral operator o, is the identity, the generator 4 is the identity
under composition of delta functionals, and thus Lo A = 4L =L for all
delta functionals L.

Recall that we defined the delta functional M to be reciprocal to the delta
functional L whenever the associated sequence for L is the conjugate sequence
for M.

ProrositioN 6.3. A delta functional M is reciprocal to a delta functional L
if and only if L « M = A.

Proof. Suppose M is reciprocal to L, and let L have associated sequence
pu(x). Then since p,(x) is the conjugate sequence for M, we have

m M|
pal) — 3 ML
k=0

and, by the spanning argument, for any polynomial ¢(x),
ME | g(x
9(p(x)) = Z < IQ( D s,

If we take g(x) == g,(x), an associated polynomial for M, we find
2(p(x)) = *™.

Therefore, L o M = A by Proposition 6.2. The converse is obvious.
We remark that if o7' = ay, then oy oo, =1 and M oL = A. Thus by
the previous proposition M = L, and therefore a;? — oy .

607/27/2-3
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We are now able to give the connection constants for sequences of binomial
type.

PROPOSITION 6.4. If p.(x) and q,(x) are sequences of binomial type, being
the associated sequences for L and M, respectively, and if

qn(x) = rﬂ(p(x))

for a polynomial sequence r,(x), then r,(x) is of binomial type, and is the associated
sequence for the delta functional L o M.

Proof. The proof is immediate from Proposition 6.2.

We now interpret the composition of delta functionals in terms of their
indicators. Recall that, if f(t) = a, + a,t + a,t*> -+ -+ is any formal power
series in F, and g(t) is any formal power series with zero constant term, then
the series

f(&(®)) = ao + a1g(t) + ax(g(®)* + -,

called the composition of f(¢) with g(t), converges in the topology of F. In
particular, if g(¢) is any formal power series whose constant term is zero and
whose linear term is nonzero, then there exists a unique formal power series
g7Y(#), called the inverse of g(t), with the property that g(g=X(t)) = g g(t)) = ¢.

Finally, recall that every formal power series f(t) = ay + a;t + a,t® + -
has a derivative f'(¢), obtained by termwise differentiation; that is, f'(¢) ==
a; + 2a,t + 3ag1? 4 -

THEOREM 6. Let L and M be delta functionals, with indicators f(t) and g(t),
respectively. Then the composition L o M is a delta functional with indicator g( f(t)).

Proof. Writing B, , Bar, and By = Bar o B, for the automorphisms of P*
associated with the delta functionals L, M and L o M, respectively, we have
Buf(4) = A, Bug(d) — 4 and Brup(L o M) — A. Thus Lo M = f,(4) =
(Bur o Br)(A) — Bt o B A) — Prle(A) — g(B*A) = g(f(A)). Therefore the
indicator of L o M is g( f(1)).

CoroLLARY 1. Two delta functionals L and L are reciprocals if and only if
their indicators are inverse formal power series.

We can now include indicators in our solution of the connection constants
problem.

PropostTION 6.5. If p.(x) and q,(x) are sequences of binomial type, being
the associated sequences for L = f(A) and M = g(A), respectively, and if

n(*) = ra(p(*))
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for a polynomial sequence r,(x), then r,(x) is the associated sequence for the delta
functional L < M = g( f~Y(4)).

We conclude this section with two results on derivations. The chain rule
for derivations of the umbral algebra is easily derived:

PRrOPOSITION 6.6. Let ¢ and &y be the derivations of the umbral algebra
associated with the delta functionals L and M, respectively. Then

8y = (6,M) &y, .

Proof. Any linear functional N can be expanded into a convergent series
of powers of M:

N = ay + aM + a,M? - +, a;, ek,
and since ¢, and &,, are continuous, we have

&N = a, + 2a,MO,M + 3a,M20, M + - = (8, M) 2,,N.

Thus
Op = (6, M) 0y .

The following proposition is immediate.

ProrositioN 6.7. If L is any delta functional and M is any Linear functional,
the L-indicator of &, M is the derivative of the L-indicator of M.

7. SHIFT-INVARIANT OPERATORS

On the algebra of all linear operators on P we define a topology by specifying
that a sequence T, of operators converges to an operator T whenever, given
a polynomial p(x), there is an index ng such that if n > ny then T, p(x) = Tp(x).
Under this topology, the algebra of all linear operators is a complete topological
algebra.

Every linear functional L defines a multiplication operator on P*, mapping
the linear functional M to the linear functional L - M. We denote this operator
by u(Ly*. Thus, u(L)*M = L - M. Every multiplication operator is continuous;
hence by Proposition 6.1, its adjoint (L) maps polynomials into polynomials.
In symbols,

LM | p(x)y = <w(LY*M | pl)y = <M | (L) p(=)).
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We investigate the properties of the map L — u(L), beginning with

ProposITION 7.1.  The mapping L — (L) of linear functionals into linear
operators is a continuous algebra monomorphism.

Proof. Only the continuity need be verified. Let the sequence L; of linear
functionals converge to zero. Given n 2= 0, we have /L, |x/) =0 for j =
0,1,..,n and for large k, depending on n. Hence, for all scalars a € K and
for large &, (L;, | (x <~ a)*) = Oand thus 0 = {L; | (x + a)") = (e, | w(Ly)a™ .
Therefore u(L,)x" = 0 for k large. Q.E.D.

The set of all operators of the form u(L), for some linear functional L, is
thus a topological algebra. We call an operator of this form a shift-invariant
operator, and denote the algebra of all shift-invariant operators by 2. Thus,
the umbral algebra and the algebra of shift-invariant operators on P are
isomorphic as topological algebras.

CoRrOLLARY 1. A shift-invariant operator T 1s invertible if and only if
T +0.

As an example, consider the shift-invariant operator E* = u(e,). From
Leasn | P(R)) = Leuss | p(*)) = {ev | EP(x))

we conclude that E%p(x) = p(x -+ a). We call E® the translation operator.
In particular, E® = I, the identity of 2. Similarly, it is seen that D = pu(A)
is the ordinary derivative Dp(x) = p'(x).

. A characterization of shift-invariant operators is
ProposiTiON 7.2. A linear operator T is shift-invariant if and only if TE® —
EeT for all a € K, that is, if and only if it commutes with all translation operators.

Proof. Suppose TE* == E°T for all ae K and for some operator 7" on P.
We show that T" == u(L), where L is the linear functional defined by (L | p(x)) =
e | Tp(x)>. In fact:

{ea | (L) p(%)) = {Lea | p(%))
=L |px + a)p) =<e| Tp(x + a)p
= (e | E*Tp(x)) = {eq | TP(x))
for all @ € K and thus u(L) p(x) = Tp(x).

Another characterization of shift-invariant operators is

PROPOSITION 7.3. Let M be a delta functional. Then a linear operator T
is shift-invariant if and only if Tu(M) = n(M)T.
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The proof is omitted.

In view of the isomorphism between the algebras P* and 2, we may expect
operator analogs of some of the notions introduced for the study of the umbral
algebra.

A delta operator is an operator of the form Q == u(L), where L is a deita
functional. Delta operators are characterized by the following property of
immediate verification:

ProrosiTiON 7.4. A shift-invariant operator Q is a delta operator if and
only if Ol = 0 and Qx is a nonzero constant.

If O = u(L) is a delta operator, the associated sequence for Q is defined to be
associated sequence for L. The relationship between a delta operator and its
associated sequence p,(x) is a generalization of the relationship between the
derivative operator and the sequence p,(x) = a”.

ProrosiTION 7.5. The polynomial sequence p,(x) is the associated sequence
for the delta operator Q if and only if it satisfies the following conditions:

(1) polx) =1,
(i) pu0) = O for n > 0,
(i) Opa(x) = npoa(x).

Proof. Let O = w(L) and suppose first that p,(x) is the associated sequence
for Q, and hence for L. Then

= Sk%l,’ﬂ = <Lk [ ”Pngl(”»

Therefore, by the Expansion Theorem,

M| Qpu(x)> = (M| npy_y(x)>

for every linear functional M, and thus Op,(x) = np,_,(x).
Conversely, suppose the polynomial sequence p,(x) satisfies (i), (ii), and (iii).
Then

CLF | pa(x)y = e | OFpn(x)>

ll

so that p,(x) is the associated sequence for L.
The Expansion Theorem, stated in terms of shift-invariant operators, leads
to another generalization of Taylor’s formula:
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PrOPOSITION 7.6. Let Q be a delta operator with associated sequence p(v),
and let T be a shifi-invariant operator. Then

COROLLARY 1. Let Q be a delta operator with associated sequence p(x). Then

Ev:i";)o

k=0

‘COROLLARY 2. Let Q be a delta operator with associated sequence p,(x),
then if p(x) is any polynomial, we have

x4 3) = i 2 4,5,

For Q = D, Corollary 2 is precisely Taylor’s formula.

If O = w(L) and T = u(M), then the Q-indicator of T is the L-indicator
of M.

We next consider automorphisms and derivations of the algebra 2 of shift-
invariant operators. In view of the isomorphism p: P* — X' of Proposition 7.1,
every automorphism y of X is of the form y == ufu~!, for some automorphism B8
of P*. In fact, every automorphism of 2 is related to a unique delta operator
Q = (L) by Bo = pBrp™

Similarly, every continuous derivation of X' is of the form ¢, = woppt
These characterizations can be made more explicit as follows:

TuEOREM 7. (a) FEvery continuous automorphism of the algebra of shift-
invariant operators is of the form T — o 1T, where o is an umbral operator,
and conversely.

(b) Every continuous derivation of the algebra of shift-invariant operators
is of the form T — T0 — 6T, where 0 is an umbral shift, and conversely.

Proof. (a) Suppose B, is a continuous automorphism of X, where O = u(L).
For a shift-invariant operator T' = u(M) we have

BoAT) = uBrp™(T) = pBr(M).

Now if N is a linear functional and p(x) is a polynomial, we may write

(N | (Bo(M) px)y = {BuUM) N | p(x))
= {BUMBL'(N)) | plx)> = (MBL(N) 1 B p(x))
= (BTN | (M) Brp(x)> == <N (BL)* TBL*P(x) -
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and thus Bo(T) == (BH)* TB.*. The same argument proves the converse
assertion.

(b) Let , be an continuous derivation of 2. If Q = p(L)and if T = u(M)
is any shift-invariant operator, we have
Eo(T) — porp(T) = uoy(M).
If N is any linear functional, and p(x) any polynomial, then
N e (M) p(x), = CG(M)N | p(x))
— (o (MN) — Mo, N | p(a))
= (N [(Ter* — 0.*T) p(x))-

Therefore, 6o(T') = T¢,* — &, *T. The converse is proved similarly.
As an application, we obtain a representation of umbral shifts.

THEOREM 8. Let 0, and 0, be the umbral shifts associated with the delta
functionals L and M, respectively, and let Q = (L) and P = w(M). Then

0, = 0,,(2,0)7.

Proof. By Proposition 6.5, &M = (9, L) and so & = (OpL)™ Oar-
Observing that &,,L = p10pu(pYQ)) = 10,0, for a linear functional N
and polynomial p(x), we have

(N0 p(w)- = (OLN | p(x)
= {(OuL)™ 0y N | p(x)> == (O N | nl(OnL) ] (%),
= {0 | [0 L)) pl(x)>
= (e [ (6pQ) 7" p(x)>
= (N[ 0,(6p0)7" p(x).
The conclusion follows.

By letting M = 4 in the preceding theorem, we obtain

CoroLLARY 1 (Recurrence Formula). Let p,(x) be the associated sequence
for the delta operator Q. Then

Praa(%) = 2(8pQ)7 pul)-
COROLLARY 2. Let 8, be an umbral shift, with corresponding delta operator Q.

Then
00, — 8,0 =1
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For the special case Q = D, the associated shift 6, is the operator X of
multiplication by x, and Corollary 2 reduces to the familiar formula
DX — XD = I. For convenience we denote the operator 6,7 = TX — XT
by T, and if L = p~(T) we denote u~Y(7") by L'.

As expected, the indicator of the operator 2,0 is the derivative of the indicator

of 0.
We conclude with some powerful formulas for computing the associated
sequence for a delta operator.

THEOREM 9 (Transfer Formula). If QO = PD is a delta operator, where P
is an invertible shift-invariant operator, and if p,(x) is the associated sequence

Sor Q, then
Pols) = Q' Pt
for alln = 0.

Proof. Letting ¢,(x) = Q'P-""1x" we see that

Ogn(¥) = PDQ'P"~1x" = ng,, (x)

and thus by Proposition 7.5 we need only show that go(x) = 1 and ¢,(0) = 0
for n > 0.
It is clear that g,(x) is a constant. Furthermore,

(elgo(x)) = (| Q'P1) = (e | (P + DP) P71}
=<l 1) =1,
and we have go(x) = 1. For n > 0,
{e | gu(x)) = {e| Q'p1am)
= e | (P + DP") P~n~1x")
= (e | P7"a™y 4 (e | nP P~ 1gn—1)
= (e[ Py — Le [ (P)am)
= (e | Pmay — {uH(Pm) [ 4™
=0.

Thus ¢,(0) = 0 for n > 0 and the theorem is proved.

CoroLLARY 1 (Transfer Formula). If Q = PD is a delta operator, with
associated sequence p,(x), then

Pul) = xP-mand
Jor all w > 1.
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Proof. 'The result follows from Theorem 9 and from the following com-
putation:
Q' P71y = (P - DP") P-n-1x»
== Pyt 4 g P P11
= Pong? o (P a7t
= Prx® — (P X — XP-m)xn1

— yP-nxn1,

COROLLARY 2. Let Q be a delta operator, with associated sequence p,(x).
Let R = QT be another delta operator, with associated sequence q,(x), where
T is an invertible shift invariant operator. Then

qn(”) = xTAH'X_lpn(x)»
Jorn = 1.
Since any two delta operators Q and R are related by QT = R for some

invertible shift-invariant operator, Corollary 2 relates any two associated
sequences.

8. EXAMPLES

We are now ready to show how the methods developed so far give an efficient
technique for the computation of associated polynomials and connection
constants. Specifically, to compute the matrix of constants ¢, ;, in

mwzé%mw

where p,(x) and g,(x) are of binomial type, one uses the fact that the sequence
7u(®) = X5 €n. % is also of binomial type, and that its indicator is computed
by umbral methods in terms of the indicators for p,(x) and g,(x). Once the
indicator for 7,(x) is known, the coefficients of r,(x) are computed by one
of the explicit formulas given in the previous section.

1.3. We have already remarked that the operator u(4) is D, the ordinary
derivative. Clearly D’ = I, and the associated sequence is p,(x) = x™.

2.3. 'The forward difference operator is 4, = ple, —€) = E* — 1, and its
derivative is 4,” = aE® To compute the associated sequence, we use the
Recurrence Formula:

Pn(x) = x(Aa/)Al anl(‘x)
xa tE~p, (%)

= a*lxpﬂ—l(x - a),
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whence

Pa(®) = a"x(x — a)(x — 2a) - (x — (n — 1)a)
= (x/a),
as previously announced.
We can use the Recurrence Formula to compute the conjugate sequence

for ¢, — e = e — ¢ by computing the associated sequence for the conjugate
functional {log(l -+ .4)]/a. Indeed, we have

gu(®) = xa(l -~ D) gn_4(x)
= -+ = [ax(1 + D)]"1
= e ¥axD)" ¢*.

We know from previous discussions that the g,(x) are the exponential
polynomials. Thus we have proved the Stirling numbers identity

e (xD)" e* = 3 S(n, k) &¥,

k=0

where S(#, k) are the Stirling numbers of the second kind. It is easy to see by
Rolle’s theorem that these polynomials have real roots.

3.3. The backward difference operator I — E®, with derivative aE-®, is
similarly treated, giving the associated polynomials p,(x) == {x/a>,, .

If QO is a delta operator with associated sequence p,(x), and if ¢,(x) is the
associated sequence for the Abelization R = QFE® of O, then we have

gn{x) = xlk—emx1p (x)
(*)

X
= —x—iﬁpn(‘\ — an).

This specializes to a host of polvnomial sequences studied in various circum-
stances.

4.3. The Abel operator p(Ade,) is DE%, hence its derivative is (DE?) =
E*(1 + aD). The Transfer Formula computes the Abel polynomials

pn(x) — aff-angn-1

== y(x — an)" L
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5.3. The difference-Abel operator is E(E® —1I) and its derivative is
E*(a =+ b) E* — a). From Eq. (%), we compute the Gould polynomials

Pul(%) = *E7"x"Y(x[b),,

~ (X — an )
N — an ( b

R

6.3. 'The central difference operator is u(8,) = E** — E-%/2 and its derivative
is (E%2 — E-22)2. For a == 1, Eq. (%) (with a replaced by —a/2) gives the
Steffensen polynomials

Palx) = xE" 2% 1(v),

(e +nf2 — 1), = «*L

7.3. The Laguerre operator is L = u(l) = D(D — I)~1. The Laguerre
operator satisfies

Lp(x) == Jn e'p'(x + 1) dt.

To compute the derivative L', we recall that

L'p(x) = (LX — XL) p(a),

whence

0
L :f tetp' (v — t) dt.

Several expansions for the associated sequence can be obtained. By the Transfer
Formula we have

L,H(X) ot A([) _ I)n -l — xeachefmxnfl,
which is the classical Rodriques formula. By the Transfer Formula,
L (x) = L'(D — I)"+t xn
P __(D —_ I)n—l R
= il yn,
Finally, expanding (D — I)"~! we obtain the coefficients explicitly:

L) =Y (e

=0 '
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Next we give some examples 6f computation of connection constants. By
way of orientation, we repeat a classical instance:

8 24, Determine the constants c,, , in

a3

(x)n - Z Cn.k<x>k .

r=0

Since (x), is the associated sequence for g(A4) = e — e and {x),, is the associated
sequence for f(A4) = e — e, g(fY(A4)) = AJ(e — A). Therefore, r,(x) —
S roo Cn,18" = L,(—x), where L,(x) are the (basic) Laguerre polynomials.
One can hardly hope for anything simpler.

3.4. Determine the constants ¢, ; in

n

&y, = Z Co 1%/ @y, .

k=0

Since {x), is the associated sequence for g(4) = ¢ — ¢4, and {x]a), is the
associated sequence for f(4) = e — e~%4, we have g( f~1(4)) = ¢ — (e — A)~

Thus by the Recurrence Formula,
ro(®) = xa(I — Dy, (x)
— e = an(x(I . D)a-l)n 1
= a"e”(xD)" e~*.

® 4.4. Express the Abel polynomials as linear combinations of the Laguerre
polynomials. That is, determine the constants €y, such that

An('x! a) = z Cn,Ich(x)'
k=0

The sequence L,(x) is the associated sequence for f(A) = Aj{(Ad —¢), and
A,(x,a) is the associated sequence for g(4) — Ae?t. Thus g fYA) =
[4/(A — 1)] e*4/t4=D. By the Transfer Formula, the associated sequence for
g(f7H(A) is

ul%) = (D — I)® g-anDi(D=Dyn-1

= xe*Dne—Te—anD/( D—I)gn—1

The coeflicients ¢, , are now obtained by a routine Taylor expansion.

¢ 5.4. Determine the connection constants c,, of the Gould polynomials
with the factorial powers:

n

Gn(x’ a, _1) = Z cn,7;<x>l\: .

k=0
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Again, G,(x, a, —1) is the associated sequence for g(4) = e*4(e~4 — ¢) and
v, 1s the associated sequence for f(A) = e — e, hence, g(f(4)) =
--A(e — ) By the Transfer Formula

o) = (1)l = D
‘an
= (—=1)" (=1)% (n — 1), am=F,
5 (@) o
a relative of the Laguerre sequence.

* 6.4. Determine the connection constants ¢, ; of the Steffensen polynomials
with the factorial powers:

n

A =Y @, 7

k=0

The Steffensen polynomials are the associated polynomials for § = e_; p(e; — e).
In this case g(Ad) = e=4/*(e? —¢) and f(A) = e —e Thus g(f~Y4)) =
Ale + A)172 and

ro(x) = x(1 + D)2 xn1

=3 ()= ees

again a most explicit answer.

74. We derive Erdelyi’s duplication formulas for Laguerre polynomials;
that is, we determine the ¢, , for which

L,(ax) = kzz].cnkllk(x)

Now L,(ax) is the associated sequence for g(A) = a~'4/(a14 — ¢) and
therefore 7,(x) = Y ;_g ¢, ;** is the associated sequence for A[[(¢ — a)4 + a].
By the Transfer Formula,

7o) = 2{(1 — a) D + al)* x"!

PR
Thus: e -
Lia) = ¥ 2 (0 7 1) (1 — arr aLyge)

k>0
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2.5. We give some applications of umbral techniques to the Stirling numbers |
s(n, k) and S(n, k) of the first and second kind. Recall that the exponential
polynomials

ba(x) = i S(n, k) x*

are the associated polynomials for the delta functional log(e -+ 4).
The Recurrence Formula gives a recurrence formula for the exponential
polynomials:

bn(x) == x(I + D) $,_4(x)
= 2(¢p_1(x) + Fp_3(x)).

Dobinsky’s formula is practically trivial. Letting p,(x) = (1), , we take an
umbral composition

, oR) .
pug)) = vt = o= ¥ PlE)
k>0 °
and thus for any polynomial p(x),

p(p(x)) = e Z p}i# ¥F,

k>0

For p(x) = x*, we obtain Dobinsky’s formula:

R knxn
$u(x) = €7 Y, -
=0
Consider the polynomials
Pal) = 3 s(n, R)(x); .

k=0

If we define the umbral operators a:x” — (x), and B: a®* — ¢,(x), then
Corollary 1 to Theorem 5 gives a~! == B. Therefore,

Pal$(x)) = Bn(x)) = Bal(x) = (%),

or, more explicitly:

stn, k) = 3 s(m,j) s(j,5) SG, k).

4,330
Similarly, from ¢, ((x)) == (x), , we obtain

Y S(n, ) s(k, i) = 8,.; .

k>0
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We can derive another recurrence for the exponential polynomials as follows.
If « is an umbral operator, then

KA = oF(A¥) at(AY.

Applying to a polynomial p(x) and using the properties of adjoints and deriva-~
tions:

(A" [axp(x) = (A" | xou(a*(A)) p(x))>.
Therefore,
axp(x) = xo(u(a*(A4)") p()).

Now if we take a: 4" — ¢,(x), then a*(A) = e* — ¢ and so wla*(4)') = E.
Setting p(x) = x” gives

Puia(¥) = x(p + 1),

which, in terms of coefficients, gives the Stirling numbers recurrence

S+ 1,k =¥ (’Z)S(i,k~ 1).

i>0

9. SHEFFER SEQUENCES

So far, we have no explicit formula for shift-invariant operators. In obtaining
an explicit formula for (L), we are led to a new class of polynomial sequences.
A polynomial sequence So(%) is a Sheffer sequence relative to a sequence p,(x)
of binomial type if it satisfies the functional equation

Sal® + ) = éﬂ (Z) $1(%) Prr(¥)

for all # 2= 0 and for all y € K.
Some characterizations of Sheffer sequences follow. The proofs follow a
familiar pattern, and are therefore omitted.

ProposiTioN 9.1. A4 polynomial sequence s,(x) is a Sheffer sequence if and
only if there exist a sequence of binomial type p,(x) and an invertible shift-invariant
operator P such that

Pulx) = Psn(x)
Joralln > 0.




