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1. INTRODUCTION

There are three known ways of describing a sequence of numbers a, , 4, , a,,
a ,...:

(1) By recursion. Here, a specific rule f is given whereby a, = f(a,_,,
a, 3 ,...). This description is used whenever the sequence is to be explicitly
computed.

(2) By generating functions. Here, the description of the sequence is
thrown back on that of the function

flx) = ay + ayx + ax?2) + .

This description has proved effective when the asymptotic properties of the
sequence are sought.

(3) By transform methods. Here, the sequence is represented as the result
of performing a definite integral, for example as a moment sequence, say

0 = [ 0 (x) i,
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and the properties of a, are thrown back on “‘corresponding” properties of
the function f(x). Stripped of irrelevancies, this method reduces to representing
the sequence a,, as the result of applying a linear functional L to the sequence
of polynomials x*. Adopting the physicists’ notation, we write this action
as L A" =aq,.

In the nineteenth century—and among combinatorialists well into the
twentieth—the linear functional L would be called an umbra, a term coined
by Sylvester, that great inventor of unsuccessful terminology. Before knowledge
of linear algebra became widespread, the action of a linear functional L would
be conceived of as raising the index 7 to a power, and then “treating” the
sequence a, as a sequence of powers a”, while reserving the right to lower
the index at the proper time. No precise rules for lowering of indices were
stated, nor could they be, as long as the underlying conceptual framework
was missing. A baffling difficulty in the calculus of umbrae was the important
“‘rule”

n

(a + a)* = z (Z) akar—F,

k=0

which seemed to imply @ + a # 2a.

If mathematicians had held back their tendency to disregard techniques,
even though useful, that do not conform to the standards of rigor of the day,
they might have been led, by an analysis of umbrae, to the concept of Hopf
algebra. Unfortunately, this was a missed opportunity, and the concept was
to emerge much later from algebraic topology. Briefly, it was recognized that
linear functionals on polynomials can not only be added, but also multiplied
according to the rule

Ll |37 = 3 () <L [ 995 | 2075,

The resulting pairing of two rings leads to a powerful formalism, which
it is the purpose of this work to develop.

A vast variety of special polynomial sequences occurs in combinatorics
and in analysis. It was recognized in a previous work that these sequences
of polynomials p,(x), which we have called of binomial type, satisfy the identity

pas ) = 3 (1) 2 i)

We show that these sequences can be defined by a simple orthogonalization
device. They are related to a linear functional L such that (L | 1> = 0 by the
biorthogonality conditions

CLF | pu(x)) = ! Sy .
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We develop the theory of sequences of binomial type starting from this condi-
tion. From the point of view of computation, the two most important problems
are, first, that of effectively calculating a sequence of binomial type once L
is given, and second, that of computing the connection constants c, ; between
two sequences of binomial type p,(x) and g,(x):

4ula) = 2 )

Our solution consists in describing the polynomial sequence 7,(x) == D, ¢, %"
as a sequence of binomial type whose functional L is computed in a very simple
way in terms of those of p,(x) and g,(x).

Polynomial sequences of binomial type turn out in large variety in problems
of enumeration, Roughly speaking, problems of enumerating objects that
are pieced together out of smaller objects which are not allowed to overlap—
for example, the enumeration of trees—fall within the scope of the present
theory. A sprinkling of examples given at the end is meant to foreshadow
a more substantial development in this direction which we were forced to
postpone.

The text has been supplemented by several examples from analysis which
have occurred in various circumstances, mostly in connection with expansion
of functions into series of polynomials, such as Taylor’s, Newton’s or Euler—
MacLaurin’s. That such expansions, as well as sundry other properties of
special polynomial sequences, turn out to be special cases of a few exceedingly
simple facts, is not only a pleasing realization. It is hoped that it will encourage
the use of the simple general techniques of the umbral calculus, and discourage
the collector’s mentality that considers each polynomial sequence as an inviolable
manifestation of a unique phenomenon.

Among the by-products of the present theory is an effective formalism for
computation involving composition with formal power series and Lagrange
inversion. A great deal of combinatorics depends on these computations, and
the classical notation of the calculus offers little relief. A linear functional L
on polynomials such that (L |a") = g, corresponds to the formal power
series whose nth coefficient is a, , and this algebraic isomorphism leads to a
swift technique for functional composition and inversion, as can be gleaned
from the examples in Section 11.

Paradoxically, this identification of linear functionals with formal power
series is one reason why a development along the present lines was
overlooked. But it would be just as arbitrary to identify linear functionals
with distributions, or with some yet-to-be-conceived gadget. The simplifying
power of the present notation occurs out of the ease of handling adjoints of
linear operators in the vector space duality between polynomials and func-
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tionals, and would be lost, had functionals been identified from the start with
formal power series.

Another by-product of the present work is the theory of factor sequences,
which allows for “polynomials” of negative degree, and which can be con-
sidered as an extension of the theory of factorial series to arbitrarv sequences
of binomial type. Thus we can define Hermite, Bernoulli, Stirling polvnomials,
etc., of negative degree. Whereas the generating functions of sequences of
polynomials of binomial type, as well as the closely related Sheffer sequences,
are expressed by exponentials, their analogs for factor sequences lead us to
define an “‘integral” analog of the notion of formal power series. which we
propose to call the Cigler transform, as it partially answers a question posed
by J. Cigler.

Throughout, some definitions and elementary results could have been
presented as special cases of Hopf algebra notions, but we have avoided this
line, partly because Hopf algebras are still little known, and partly because
it is left as a challenge to Hopf algebraists to generalize some of our notions,
for example, factor sequences, the adjointness between shifts and denivations,
and umbral composition, to their rarefied atmosphere.

A great many of the results in this work are new. Others are taken from
our previous work on this subject. In the choice of examples, we have preferred
to rely on established polynomial sequences rather than describe new sequences
which could not be properly motivated. Altogether, this work may be compared
to the archeologist’s putting together of a dinosaur out of a few charred bones
in the desert.

2. SURVEY

The notion of polynomial sequence of binomial type goes back to E. T. Bell
and probably earlier. Steffensen was the first to observe that sequences associated
with delta operators in the same way as D is to x” are of binomial tvpe, but
failed to notice the converse of this fact, which was first stated and proved
by Muilin and Rota.

The idea of associated and conjugate polynomials is first developed here.
The history of the subject has been sketched in “Finite Operator Calculus.”

The isomorphism between the umbral algebra and the algebra of shift-
invariant operators, first seen by the Hopf algebraists, has not vet made much
headway elsewhere. Thus Feller in his treatise on probabiiits dedicates two
separate chapters to Fourier transforms and to convolution «perators, and
correspondingly gives two proofs of the Central Limit Theorem_ little realizing
that they are really one and the same proof. The use of linear functionals and
of the augmentation—that is, evaluation at zero—in place of operatnrs results
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'n substantial simplifications; computations of composition and inversion of
sower series become transparent in terms of the duality between the algebra
of polynomials and the umbral algebra of linear functionals (Sections 6 and 11);
the Lagrange inversion formula, for example, boils down to the computation
of the adjoint of an operator.

[t remains a mystery why so many polynomial sequences occurring in various
mathematical circumstances turn out to be of binomial type. The explanation
we give in terms of automorphisms of the umbral algebra can be recast in
terms of the Weyl algebra in one pair of generators, that is, the associative
algebra freely generated by two variables P and Q subject to the identity
PQ — QP = I. Every sequence of binomial type determines a module over
the Weyl algebra, and such modules are easily characterized.

The Weyl algebra approach is followed by J. Cigler in the study of factor
sequences —the name is ours—but at considerable expense: in Cigler’s approach
the analog of Proposition 10.2 fails and as a consequence the computation
of associated factor sequences becomes difficult and sometimes impossible
to state.

The theory of factor sequences is barely scratched here, and it suggests
the reopening of a number of questions in the calculus of finite differences
which have lain dormant since Norlund and Pincherle. The analogy between
differential and difference equations, long considered a baffling coincidence,
can now be seen as a special case of a theory of Q-difference equations, when
Q is an arbitrary delta operator, each Q leading to its own theory of isolated
singularities much as in the case of linear differential equations with rational
coefficients. The purely algebraic connection between factor sequences and
formal power series (Section 11) may be useful in developing a purely algebraic
theory of singularities of Q-difference equations. For example, the analogy
between log », “‘the” solution of Dy = l/x, and #(x), “the” solution of
Ay = 1/x, leads more generally to the study of the Q-equations Qy = 1/x.
Similarly, R. M. Cohn’s difference algebra, conceived as a difference analog
of Ritt’s Galois theory for differential equations, is a good candidate for extension
to delta operators.

Again, the combined use of polynomials and factor sequences does away
with notions of convergence, or even of asymptotic approximation. It seems
furthermore that the notion of “formal” definite integral, which we propose
to call the Cigler transform, relates to those asymptotic expansions which arise
from stationary phase.

We cannot pass under silence a conceptual problem arising from factor se-
quences. Every sequence of binomial type is the sequence of eigenfunctions of the
operator 8,u(L) in a suitable Hilbert space. What, then, is the spectral nature
of those “‘eigenfunctions of negative order” that are the associated factor
sequence ? Does this phenomenon call for a retouching of the notion of eigen-
function expansion? Hilbert space considerations could also be called in to
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give, with the aid of the adjointness between umbral operators and auto-
morphisms (Section 6), a simple solution of the problem of conjugacy of formal
power series which has a good chance of extending to the multivariate case.

The sprinkling of examples is not meant to be exhaustive, and we were
forced to defer some applications of umbral techniques, such as: a general
understanding of Turan-type inequalities by sums of sequences (we give two
examples), a goal toward which Al-Salam, Carlitz, Toscano, and others have
contributed some dazzling spade work; a theory of “formal” partial fraction
expansions; and a structural study of the Laguerre polynomials. These poly-
nomials play a role in far too many questions, and their formal analogies with
Hermite polynomials have not been satisfactorily explained. One can, for
example, develop Feynman diagram representations of integrals of products
of Laguerre polynomials, in analogy with Hermite. Does this mean that the
Laguerre polynomials are associated with a yet-to-be-discovered stochastic
process, as Hermite polynomials are to Brownian motion ?

The combinatorial examples given in Section 14 are meant only as hints.
A more systematic correspondence between operations on polynomial sequences
of binomial type and set-theoretic operation on partitionals can and will be
presented elsewhere. For example, umbral composition corresponds to a set-
theoretic “composition” of two stores. Polynomial sequences with alternating,
though still integer, coefficients can be interpreted by a sieve that expresses
one store as resulting from the composition of two stores.

There is, however, a more promising set-theoretic interpretation of polynomial
sequences of binomial type. Let B be a ring of subsets of a set S, that is, a
family of subsets closed under unions, intersections, and relative complements.
'The Poisson algebra of B is the Boolean algebra p(B) generated by elements
denoted by (4, n), where A € B and # is a nonnegative integer, subject to the
identities (4 N B, n) = J;o((4,7) N (B,n — i)) for A and B disjoint, and
(A, n)* = Uszn (4,7). If p is a measure on B, a signed measure = on p(B)
is said to be p-invariant when =((4, n)) = =((B, n)) if w(4) = w(B). It can
be shown—subject to mild restrictions—that every p-invariant measure on a
Poisson algebra p(B) is of the form =((4, n)) = p,(u(4)) exp(Au(4)), when
A is a constant and p,(x) is a sequence of polynomials of binomial type. On
the basis of this result, the umbral calculus can be systematically interpreted
as a calculus of measures on Poisson algebras, generalizing compound Poisson
processes. This interpretation in turn suggests a vast generalization of the
umbral calculus, corresponding to measures on a Poisson algebra that are not
assumed p-invariant.

In addition to reiterating the acknowledgments given in “Finite Operator
Calculus,” we wish to express our indebtedness to the work of J. Cigler, A.
Garsia, and especially J. Delsarte, whose pioneering contributions we have
unpardonably failed to mention in previous works.
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3. TuE UMBRAL ALGEBRA

Let P denote the commutative algebra of all polynomials in a single variable x,

with coefficients in a field K of characteristic zero, which we often assume
to be either the real or the complex field. Let P* be the vector space of all
linear functionals on P. We denote the action of a linear functional L on a
polynomial p(x) by

L] plx))-

A polynomial sequence p,(x), n ==0,1,2,..., is a sequence of polynomials
where p,(x) is of degree n. It is clear that two linear functionals I and M are
equal if and only if

<L \pn(x)\/ - <M | pn(x)>

for all p,(x) in a polynomial sequence. We will frequently use this argument,
which we call the spanning argument. By the spanning argument, a linear func-
tional L is defined once (L | p,(x)> is given for all p,(x) in a polynomial sequence.
We make the vector space P* into an algebra by defining the product of two
linear functionals L and M by
AM Yy = 3 () L1 | 2,

k=0
It is straightforward to verify
ProrposiTiON 3.1. The product of linear functionals is commutative and
associative.

For a constant a, the linear functional ¢, , defined by

(e | (%)) = pla),

is called evaluation at a. We write € in place of ¢, , and call this linear functional
the augmentation. It is easy to see that e,e, = €,.; . Furthermore,

ProposITION 3.2, The augmentation is an identity for the product defined
above.

Thus the vector space of linear functionals P*, with the above product
and identity, is an algebra, which will be called the umbral algebra.

The umbral algebra is related to the algebra of functions of a real variable
under convolution. Let f and g be functions with the property that

f:; fx) x* dx and J. o:o g(x) am dx
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are defined for all integers # = 0. Define linear functionals L, and L, by
Lol p) = [ £(x) p(x) a,

Ly 196 = [ gl ple)

then the product L L, is the linear functional

ALy | p)> = [ hx) pla) d,

—C

where the function Z(x) is the convolution of the functions f(x) and g(x):
W) = [ f()glx — 1) dt.

A major portion of the sequel is concerned with the study of a special class
of polynomial sequences. A polynomial sequence p,(x) is said to be of binomial
type if py(x) = 1 and if it satisfies the binomial identity,

n

n
pale +3) = Y. () 243) puk(5)
o %
for all n, x, and y. For example, the sequence p,(x) = " is of binomial type.
The binomial identity yields, by iteration, the multinomial identity:

pn(x1+x2+---+xk):z(,

n
J1 ,-.nj]) pjl(xl) Pfk(xk)y

where the sum ranges over all k-tuples of nonnegative integers (ji ,..., ;)
for which j, + - + 7. = n.

The product of two linear functionals can be computed by using any sequences
of binomial type in place of the sequence «™. In particular,

ProrosITION 3.3. If p,(x) is a sequence of binomial type and if L and M
are linear functionals, then

LM po()y = 3 () L Pl M i)
k=0

Proof. Let P[x,y] be the vector space of polynomials in the variables
% and y. A linear functional L on P defines a linear operator L, on P[x, 1] as
follows. If p(x, y) =3, ; a; 'y, then

L,p(x,y) = Z a; L x5yl
2.7
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Similarly, the linear operator L, is defined by

L,p(x,y) = Z a; %L | &%),

In this notation the identity defining the product of two linear functionals
I and M becomes

LM | a%y == L, M/(x -+ y)"
By the spanning argument, the same identity holds for any polynomial p(x):

(LM | p(x)y = L.M,p(x + ¥).

The conclusion now follows by setting p(x) = p,(x) and expanding the right
side by the binomial identity.
One proves similarly, using the multinomial identity,

ProposITiON 3.4, If p,(x) is a sequence of binomial type, and if L, L, ,..., Ly,
are linear functionals, then

’ n e \,

Loy L 12> = X (") Bl pyd - Ll i) ()
J1sees Ji

where the sum ranges over all k-tuples of nonnegative integers (j, ,..., ji.) for which

Jim o b =

One of the kev properties of the product of linear functionals is

ProprosiTiON 3.5. Let L be a linear functional such that {L | 1> = (L |x> =
o= (L = Q. Then

LF | xms =0 for n < km.
Moreover,

|

(m!)*
Proof. Tdentity (x), with p,(x) = a” and L, = L for all / =1, 2,..., k gives

CLE AT — n JIN ... [}
e T AR SR AE

where the sum ranges over all k-tuples of nonnegative integers (j ..., Jx)
with §, — - —j, =n If n < km, then j, + - 4+ j. << km and each term
in the identity has a factor of the form (L | x> with j, << m, and therefore
equals zero. This establishes the first assertion.
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When n == km, the only possible nonzero term in the identity comes when
j: = mforall{ = 1, 2,..., k. The second assertion follows.
A frequently used special case of the preceding proposition is

CoroLLARY 1. If L is a linear functional such that (L|1) =0, then
(L¥ | p(x)> = 0 for k > deg p(x).

The umbral algebra P* is a topological algebra under the topology defined
as follows. A sequence L,, of linear functionals converges to a linear functional
L whenever, given a polynomial p(x), there exists an index »n,, depending
on p(x), such that for all n > n,,

Ly | plx)> = (L1 plx)).

Equivalently, an infinite series 3 ,uqL, of linear functionals converges if and
only if, given a polynomial p(x), there is an index n, such that, for » ©- g,

{Ly | p(x)) = 0.

In other words, the series 3 ,5,L, converges if and only if the sequence L,
converges to zero. Under this topology, P* becomes a complete topological
algebra.

ProrositionN 3.6. For a linear functional L, and for a sequence of constants ay. ,
the following are equivalent:

1) LI =0,
(i1) the sequence L* converges to zero,

. © .
(iil) the series Y ;_o a,L* converges.

Proof. 'The equivalence of (ii) and (iii) follows from the definition of con-
vergence, as remarked above. To see that (i) and (ii) are equivalent, notice
that, if <L | 1> = 0, then by Corollary 1 to Proposition 3.5, <L* pix) =0
whenever & > deg p(x). Thus L* converges to zero. Conversely, if L 1 -0,
then (L* | 1> = (L | 1>® 3£ 0 for all # == 0, and so L" cannot converge to zero.

In the sequel, the umbral algebra is always understood as a topological
algebra.

As a final remark, if p,(x) is a polynomial sequence, then a sequence of
linear functionals L, such that
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12 not a basis for the vector space P¥, but only a pseudobasis. That is, every
linear functional L can be uniquely expressed as a convergent series

o0

L=Y% aL,,

k=0

where a, = (L|py(x)>. For the condition {L; | p,(x)> = 8, , assures con-
vergence of the series and its convergence to L follows by the spanning argument.

4. DELTA FUNCTIONALS

A delta functional is a linear functional L with the property that <L |1> =0
and <L x> = 0.

In this section we establish four main results. We show that to every delta
functional one can associate two sequences of polynomials of binomial type.
Using one of the sequences, we generalize Taylor’s formula. We also establish
an isomorphism between the topological algebra of linear functionals and the
algebra of formal power series.

We begin by examining a classical special case. Consider the delta functional
A, called the generator, defined by (A4 | ") = 3§,,, . For the sequence p,(x) =
a", Proposition 3.4 gives (4% | ") = n!§, ;. In other words, the sequence ™
and the powers of the linear functional 4 form a biorthogonal set. This idea
of biorthogonality will now be generalized.

A polynomial sequence p,(x) is the associated sequence for a delta functional L
when

for all integers 7, & > 0 (we set L® = ¢). Proposition 3.4 gives

Lemma 1. If p.(x) is a sequence of binomial type and L is a delta functional
then

(L™ [ pa(2)) = nKL | py(x)>™ # 0.

This allows us to prove

ProrositionN 4.1.  Every delta functional has a unique associated sequence.

Proof. Let p,(x) = Yoy %" be a polynomial sequence. We show that
(*) uniquely defines the coefficients a,, ;. For & = n, () gives

n! = a, L" | x>

and in view of the lemma, this uniquely defines a, ,. We now proceed by
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induction. Assuming that a,, , , dy n_y sy dn.n_; have been defined, we show
the same is true for a,, ,,_;_; . By Proposition 3.5,

<Ln—i—1

and this, together with (x), yields

n n
Z an,kxk> = 2 an,k<Ln_i_l H xk; s
k=0

k=n—i—1

n
an,n—--i—1<Lnii71 } xn~i~1> = n' Sn,n—i—-l - Z an,k<Lnki71 -‘il‘; .

k=n—i
Since (L1 | x5 £ 0, @y, 4_;, is uniquely defined. Q.ED.
Since L® = ¢, (*) implies that py(x) = 1 and p,(0) = 0 for n > 0.
We wish to show that the associated sequence for a delta functional is a

sequence of binomial type, and conversely. To this end, we derive the following
generalization of Taylor’s expansion:

THEOREM 1 (Expansion Theorem). Let M be a linear functional and let L
be a delta functional with associated sequence p,(x). Then

Proof. The result follows from the spanning argument, noting that
i M {x)> M ‘
=0

The following uniqueness assertion is implicit in the preceding proof.

CoroLLARY 1. Let M be a linear functional and let L be a delta functional.
Suppose that

M =Y alF

k=0
for a,in K. Then a;, = (M | p(x)>[k), where p,(x) is the associated sequence for L.

The Expansion Theorem says that every linear functional is in the closure
of the linear span of the sequence of powers of a delta functional L. Thus,
if (L*|p(x)> = 0 for all k2 > 0, we have (M | p(x)> = O for all linear func-
tionals M. This implies that p(x) = 0. We will use this argument many times
in the sequel.

We come now to a main result:

THEOREM 2. (a) Every associated sequence is a sequence of binomial type.
(b) Ewvery sequence of binomial type is an associated sequence.
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Proof. (a) Let p,(x) be the associated sequence for the delta functional L.
For nonnegative integers 7 and j, the definition of associated sequence gives

LU0y = Y, () T 2L | pyafal. (+5)
k=0
Now if M and N are linear functionals with €xpansions
M=% al*
k=0

and

Ms

N =Y bl1"

I

k=0

a continuity argument together with (**) implies
N 220> = (T adi Y oL | pa))
B ]

= Y ab <L | pafe)

Ms

(:) L | pr)< L | 9

=) ab;
i

k=0

= 3 (T |2 (S B i)

k=0

=3 (2) M1 BN | s,

k=0

Letting M = ¢,, N = ¢, and recalling that e,e, = ¢,,,, we conclude that

Pulat8) = 3 () 2@ poos®

for all @ and 3, as desired.

(b) Let p,(x) be a sequence of binomial type. Define a sequence of
linear functionals L, by the biorthogonality conditions

Ly, | pn(x)> = n! Sy ke -

In particular, <Z, | 1> = 0 and KLy | py(®)> == 0. Thus L, is a delta functional.
The proof will be complete if we show that L; =L¢fori > 0,o0r equivalently,
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that L,L; = L, ; for i,j > 0. But this follows from the spanning argument since

"

Ly | pu)y = Y () i | 2L | P
k=0

=y (Z) RIS i — BN 8,0 =18, s = Lo ; po(¥))
k=0

for all # = 0. Thus part (b) is proved.
Our first goal has been achieved, and we turn to further corollaries of the
expansion theorem.

CoRrOLLARY 2. Let M and N be linear functionals, and let L be a delta func-
tional. Suppose

@K

M=Y al* ack,

k=0
and
N = z b L*, b,eK.
k=0
Then if
MN =Y ¢, LF, €K,
k=0
we have
x
Cp — Z ajbk_j .
=0

The preceding corollary leads to a simple criterion for invertibility of a
linear functional:

CoRrOLLARY 3. A4 lLnear functional M is invertible in the umbral algebra if
and only if (M | 1) + 0.

Proof. In the notation of the preceding corollary, if ay = (M| 1) 0,
then setting ¢, = 1 and ¢;, = 0 for & 2> 1 we may solve successively for the
coeflicients &, , and thereby determine the series expansion for a linear func-
tional N, which is inverse to M. Conversely, if <M | 1> = 0, then M is not
invertible since it has a nontrivial null space.

Setting M = ¢, in the Expansion Theorem, we find

CoroLLARY 4. If L is a delta functional with associated sequence p,(x), then

o=y 2 g

k=0
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Any polynomial is a linear combination of a finite number of p,(x). The
coefficients of such a linear combination are given by

COROLLARY 5. If p,(x) is the associated sequence for the delta functional L,
and If p(x) is a polynomial, then

k>0

Pp) = ), g Px(*):

By Corollary 1 to Proposition 3.5, all but a finite number of terms in the
above sum are zero.

We proceed now to the next main result. By virtue of the Expansion Theorem,
given a delta functional L we may associate to every linear functional M a
formal power series in a single variable. In fact, if

@
=Y ql*
k=0

we associate to M the formal power series

1) = g@ a,tt.,

\We call () the L-indicator of the linear functional M. When L is the generator 4,
we call f(#) simply the indicator of M.

Recall that the algebra F of formal power series can be made into a topological
algebra by stipulating that a sequence f,(¢) converges whenever the sequence
of coefficients of each power of ¢ converges in the discrete topology of the
field K; that is, whenever the sequence of coefficients is eventually constant.
In this topology we can show

THEOREM 3. Let L be a delta functional. Then the mapping ¢ which associates
to every linear functional

el
M =Y al* a,c K,
k=0
the formal power series
w
f(t) = z at®
k=0

is a continuous isomorphism of the umbral algebra onto the algebra of formal power
series.

607/27/2-2
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Proof. The Expansion Theorem, together with Corollary 1, shows that ¢
is linear, one-to-one and onto. Corollary 2 shows that ¢ is an algebra homo-
morphism.

To prove that ¢ is continuous, suppose L has associated sequence p,(v),

and suppose M, is a sequence of linear functionals converging to the linear
functional M. If
M, = Z a;:.)Lk
k=0
and

M= alt

k=0

we must show that
o (n)
x
(M) = Y oMt
F=0
converges to

(M) = f ayt,

k=0

By definition of convergence in P*, for any fixed j >> 0, there is an #, such
that n > n, implies (M, | pi(x)> = (M| py(x)>. In other words, n > n,
implies af” = «;. But this is the definition of convergence in F, and thus

$( M) converges to ¢(M).

CoroLLARY 1. A linear functional M is a delta functional if and only if the
L-indicator of M has zero constant term and nonzero linear term.

COROLLARY 2. A linear functional M is a delta functional if and only if,

for every delta functional L, there exists an invertible functional N such that
M = LN.

"The following property of delta functionals will be repeatedly used:

PROPOSITION 4.2. Let L be a linear functional with (L|1> = 0. Then the
powers of L, including L® = ¢, span the space P* if and only if L is a delta functional.

Proof. If L is a delta functional, the Expansion Theorem shows that the
powers of L span P*. Conversely, suppose the powers of L span P*. If
(L|xy =0, then (L¥|x) =0 for all 2> 0. But since (4 |x> 7 0, the
generator 4 cannot lie in the span of L*. Thus (L | x)> % 0.

We now turn to the final main result of this section, which is another one-
to-one correspondence between delta functionals and sequences of binomial
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type. We begin with a characterization of the coefficients of sequences of
binomial type. Its verification is straightforward.

ProrosiTiON 4.3. A polynomial sequence

Qn(x) = Z an.kxk
k=0
is of binomial type if and only if

(i +]) An,iv; = i (Z) @iy 5 ()

¢ )
Sor all n = 0, and for all i, > 0.

We define the conmjugate sequence of a delta functional L as the polynomial
sequence

= 3 I

k>0

By Proposition 3.5, each g,(x) is a polynomial of degree .

THEOREM 4. (a) Every comjugate sequence is a sequence of binomial type.

(b) Every sequence of binomial type is a conjugate sequence.

Proof. (a) It follows directly from the definition of product of linear func-
tionals that the coefficients of the conjugate sequence satisfy (s#x), thus proving
part (a).

(b) Given a sequence g,(x) = Y;_ a, ,&* of binomial type, we define
a sequence of linear functionals L, by

Lyla™ = Kla,,.

Then <Ly i 1) =a;4=0and (L, | x> = a,, 7 0s0 L, is a delta functional.
Moreover, since the a,, , satisfy (x+x), we infer that

"o
Ly |20 = (L XLy ),
> () )

Therefore L, ; == L,L; . This implies that L, = L,* and g,(x) is the conjugate
sequence for L, , proving part (b).

Thus we see that a delta functional L is associated with two sequences of
binomial type, its associated sequence p,(x) and its conjugate sequence ga(%).
We will say that ¢,(x) is reciprocal to p,(x). Should p,(x) = g,(x), as in the
case L = A, the sequence p,(x) is called self-reciprocal.
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* Similarly, a sequence p,(x) of binomial type is associated with two delta
functionals, namely, the functional L, for which p,(x) is the associated sequence
and the functional L, for which p,(x) is the conjugate sequence. We will say
that L is reciprocal to L. Should L = L, the linear functional L is called self-
reciprocal.

If p,(x) is a sequence of binomial type, and if L is the linear functional
satisfying

L paf%)) = 00

for n > 0, then by the spanning argument, L is the delta functional whose
associated sequence is p,(x). Thus

LR pof)y = ml B,y

We generalize this with:

ProposiTiON 4.4. Let p,(x) be a sequence of binomial type. Let L be a delta
functional and let M be an invertible linear functional. Then p,(x) is the associated
sequence for LM~ if and only if

forn =1

Proof. 1If p,(x) is the associated sequence for LM~1, we have

= (Z) LM pr(@)><XM | pr_n(x))

= n(M | pp_1(x)),

the last equality since (LM |pi(x)> = 6,,. Conversely, if (L|p,(x)> =
n{M | p,_(x)>, for n == 1, we have

n

LM po(e)> = Y () <L M | poad)

k=0

n

= 3 () RO pra@(M | i)

k=1
= n{MM™ | pp_s(%)> = 1€ | pna(¥))

= nsn,l = Sn,l .

By the remark preceding the proposition, p,(x) is the associated sequence
for LM-1.
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5. EXAMPLES

We begin a continuing discussion of some notable examples. We label each
:=stallment by the symbol a.b, where a is the example number and b is the
:nstallment number.

First we give examples of delta functionals, along with their associated
-cquences, indicators, and some applications of the Expansion Theorem.
Derivation of the associated sequences is deferred to Section 8, and computation
of the indicators, being straightforward, is omitted.

1.1. 'The sequence x” is the associated sequence for the generator 4, whose
indicator is the formal power series ¢. The binomial identity is the binomial
formula, and expansion of the evaluation ¢, in powers of the generator is Taylor’s
formula

-Zh

since (A* | p(x)y = p*(0).

2.1. The falling factorial sequence (x/a),, where (¥), =y(y —1)
(v —n + 1) is the falling factorial, is the associated sequence for the forward
difference functional ¢, — ¢, whose indicator is the formal power series e — 1.

For a = 1, the binomial identity becomes

n

@430 =Y () @ Dnor-

k=0

Expansion of the evaluation ¢, in terms of the forward difference functional
gives Newton’s expansion

kzo (J’/a)k e, — ). ()
Using the expansion
@ =3 () e

=0 J

and the fact that ¢, = ¢,;, and applying the result to a polynomial p(x) gives

=3 ()% ()~ .

k>0 i=0
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By way of orientation, we derive one of the classical formulas for numerical

differentiation. This results from the expansion of 4 in powers of €, — «:
, , A (x/a . ;
PO = A1 p6y = ¥ DD (e piyy.
k>0
—1 )7«1 k

-3¢

k>0

DC () .

3.1. The rising factorial sequence {x|ay,, where {(y», = y(» = 1) -
(¥ +n —1), is the associated sequence for the backward difference functional
€ — e_,, whose indicator is the formal power series 1 — e~%!, The identities
are similar to those of the forward difference functional, and we mention only

n

n
X+ Won = Xk {YDnr -
2 (&) o e
If L is any delta functional, the Abelization of L is the delta functional e,L.
The associated polynomials for ¢,L can be explicitly computed (Section 7)
in terms of the associated polynomials for L. We give two examples.

4.1. The Abel polynomials A,(», a) = x(x — an)"! are easily verified to

be the associated polynomials for the Abel functional €,A, where

(ead | p(x))> = p'(a).

The indicator of the Abel functional is the series ze?t.
Theorem 2 gives a proof of Abel’s identity:

n

(x+3)x+y—an)-t =3y (Z) xy(x — ak)*1(y — a(n — k))r—*-L,

k=0
Expansion of the evaluation ¢, in powers of ¢,4 gives

— k—1

El €ra »
k>0 :

or

py) =Y y(—y“)—P‘k’(k )

k>0

and, when p(y) = ¢¥, we obtain the beautiful

—_ k-1
o=y Wy k'ak) ote,

x>0

which is easily justified by a limiting process.
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5.1. The Gould polynomials

Go(x, a, b) = x (x——an)n

x — an b

are the associated polynomials for the delta functional e,(e, — ¢), the difference-
Abel functional, whose indicator is e*(e?* — 1).

The binomial identity, resulting from Theorem 2, is Vandermonde convolu-
tion

¥ty (G5 y —anlh

Xty —an "
=Y e E T ah (= = 2ty (= an — Ky

Corollary 5 to Theorem 1 gives the interesting expansion

20 = T 5225 (O ) £ i (B ik + )

k>0 ¥

6.1. 'The central difference functional 8, = ¢, — €_,;o, whose indicator
1s the series e®/2 — ¢%!/2 = ) sinh at[2, is a special case of the preceding
example. For a = 1, the associated sequence

xn] = x(x + n/2 —_ l)n—l

gives the Steffensen polynomials.
By expanding a polynomial p(x) in terms of the Steffensen polynomials
(Corollary 5 to Theorem 1), we obtain the interpolation formula

p3) =Y —2 (¥ TH2) (5| .
Y goy+k/2( k )

7.1.  The (basic) Laguerre polynomials

! /n

are the associated polynomials for the Laguerre functional

Alpey = [ enyar

From (| x") = —n!, we infer that the indicator of [ is the formal power
series #/(t — 1).
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Expanding the polynomial p,(x) = x” in terms of the Laguerre polynomials
gives the remarkable
nl m—

y =3 (e (o T ) Lo

k>0

i

We now use Proposition 3.4 to derive some identities. Taking, for example,
all L; = ¢, — ¢, the forward difference functional, and p,(x) any sequence
of binomial type, we find

Leg — €)F | pulx)y = Z (il ’il.’ ik) pil(a) "'Pik(a)'

iyt tig=n
;>0

Expanding (e, — €)* by the binomial theorem

Lok

(€ — €)= ZO ( i ) (=1 e
gives the identity
5 (%) (= 1y pofia) = " ) puge)
Eﬂ ( ‘ ) (_ ) Pn(la) B iﬁ‘"gik:n (il [ARAE] ik Pil(a) Pik(a).
>0

For p,(x) = «", this specializes to

.
Z (7)(-nptin = ix+~:§gk=n iom )

The right side counts the number of ways of placing » balls into % boxes, with
no box empty. It thus equals k! S(n, k), where S(n, k) are the Stirling numbers
of the second kind.

Setting p,(x) = (x/b),, the falling factorial sequence, and then replacing
alb by r, we obtain the binomial identity:

go(f) (1 () = I ()-()

;>0

valid for all » > 0. With p,(x) = <{«/b)>,, the rising factorial sequence, a
similar identity is obtained where the multiset coefficients replace the binomial
coeflicients.
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The difference—Abel functional €,(e, — €) gives other remarkable identities
by the same use of Proposition 3.4. For example,

k

> (5) -1 putak + i

=0

“ = Y (i 1) hale 8 = pif@] - [pufa + B) — pif@)

f it =n Zl ey

for any sequence p,(x) of binomial type. In particular, for p,(x) = x" with
a-+—b=-—1and a = 1:

S (5) -2y

ST P LG A B RV R

11+. cbip=n LRI

= (—2)* (")
( ) il+--§ik=n 1y yeeey lk)
i0dd
Except for the factor (—2)F, the right side counts the number of ways of placing
n balls into & boxes, subject to the condition that each box contain an odd
number of balls.

We next consider some examples of conjugate sequences.
1.2.  The conjugate sequence for the generator 4 is clearly the sequence x”.

2.2. 'The conjugate sequence for the forward difference functional ¢, — ¢
can be obtained from {(e, — €)* | x*> = a*k! S(n, k), where S(n, k) are the
Stirling numbers of the second kind. In fact, for a = 1:

(%) = i S(n, k) x*.

These are the exponential polynomials.

3.2. 'The backward difference functional gives a variant of the exponential
polynomials, namely, for a = 1:

gn(*) = kio (—1)"* S(n, k) «*.

4.2. The conjugate sequence for the Abel functional ¢,4 is easily compu;ced
to be

L

als @) = Y. (1) (aky¥

k=0
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5.2. The conjugate sequence for the difference-Abel functional e,(e, — €)
has not occurred in the literature. It is:

2u(x, a, b) :,é }Z: ( )(aky b =iS(n — i, k) x*.

We call these the conjugate Gould polynomials.

6.2. The conjugate polynomials for the central difference functional §,
are found by the same methods to be the Carlitz-Riordan polynomials

Kf) =a Y Y (”) (— 1y~ ki2n=iS(n — i, k) 2%,
k=0 i=0 * !
7.2. For the Laguerre functional /, we find

Bl =), (i, i ik)(”l)kill"'ik!

i)y ti=n
>0

~corn(i)

Thus the conjugate sequence of the Laguerre functional is the same as the
associated sequence, namely, the basic Laguerre polynomials. The explanation
of this remarkable fact is given in the sequel.

8.2. The Bell polynomials. For the first time we require a field other than
the real or complex field. Let % be a field of characteristic zero, to which a
sequence of independent transcendentals x, , x,,... has been adjoined. Over
this field, define the generic delta functional L by

L x™y = «x, for n>1,
Lty =0.

The conjugate polynomials for the generic delta functional are the Bell
polynomials. An explicit formula for the coefficients is obtained from Proposi-
tion 3.4:

=2 cl'cz . (%)01 (—%)cz’

where the sum ranges over all nonnegative integers ¢, ¢,,... satisfying

6 +2+-=mnand ¢ +¢, + - = k.
For the Bell polynomials, we use the notation

<Lk xn\

Bn,k = Bn,k(‘xl y Xp yeen ) -

ba(%; %y, X3,.) = Y By i¥".

k=0
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All known identities for the Bell coefficients B,, , follow from the multiplication
rules for delta functionals. We give a sampling:

n—1 n

(@) kB, = Z (]) Xn_iBj 1,

J=k—1
rewritten in the present notation, becomes the trivial

(LE | x™y "om L &Py
Sl A AR AT ) D s ard
(k — 1) j=§'_1 (]) ‘ (k—1)!

(b) Let the delta functional L; be defined by <L, | "> = x,,/(n + 1),
forn > 1and (I;]1> = 0. Then L =L, 4 + x,4. The conjugate sequence
for L, is b,(x; x,/2, x5/3,...). An identity relating this polynomial sequence
to the Bell polvnomials is derived as follows. We apply

C o (k i ik
LF = ) 2L A%
X (j)m
to the polynomial x” and simplify:
k
n k —J | gl F
A |amy = 3 (%) sy <Ly,
j=0 \J
Hence
: n! fe—j
B, (%1, % 00) = 3 T By, i(%22, %5/3,...).

j=0

Similar identities can be obtained with the unique delta functional L; such
that L = x4 + %, A%/2! - -+ + 2, AT — 1) +- AL,
(c) Consider now the field £ with additional independent transcendentals
Y1, ¥, adjointed. The conjugate sequence of the delta functional L' given
by (L' | %) = %, + Y5 18 by(x; 2, -+ ¥y, ¥ + ¥3,...). Setting (L" | x> = v,,,
so that L’ = L 4 L”, one obtains

ok . .
ALy ey = Y () < amd @y | am,
j=0 *J

whence we obtain

%
B, x(%y + 315 %5 + Yo o) = Z By, (%15 %3 30ee) B (315 Y2 o)

G=0

(d) From Proposition 3.4, one easily obtains

B,,,.k((), 0,..., x_,,~ 3 0,..-) == 0,
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unless n = jk, and

k)!
By (J&)

TR

(e) Every delta functional can be obtained from the Bell generic delta
functional by specializing the values of the x,. Thus every formula for the
Bell polynomials gives a formula for all conjugate sequence. For example,
from (b) one obtains

LK amy = 2 (];) () L | &%~ (L7 | a7,
=0

where L is any delta functional and where L = L;4 -+ x,A. Similarly, (c)
gives the conjugate polynomials of the sum of two (or more) delta functionals
in terms of the conjugate sequences of the summand.

6. AUTOMORPHISMS AND DDERIVATIONS

Given two polynomial sequences p,(x) and g,(x), a frequently encountered
problem is that of determining a matrix of constants ¢, ; , which we cail the
connection constants of p,(x) with g,(x), such that

00 = 3 enntule). e

In this section, we give a solution to this problem when the polynomial sequences
are of binomial type. The solution we propose takes a particularly simple
form in the umbral notation we now introduce. If r(x) = Y, ¢,%* is a polynomial,
and p,(x) is a polynomial sequence, the umbral composition of r(x) with p,(x)
is the polynomial, written #(p(x)), and defined by

n

r(p(x)) = . cupul®).

k=0

If r,(x) and p,(x) are two polynomial sequences, the umbral composition of

(%) with p,(x) is the polynomial sequence r,,(p(x)). In this notation, () becomes
qn(*) = 7a(p(*¥)),

where 7,,(x) = Y p_o Cui¥".

Umbral composition is simply the result of applying a suitable linear operator
to a polynomial sequence. In particular, if « is the linear operator on P defined
by ax™ = p,(x) for n =0, 1, 2,..., then ar,(x) = r,(p(x)), and (x) becomes

Qn(x) = 0”"n(x)'





