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Zarankiewicz, in problem P 101, Collog. Math., 2 (1951), p. 301, and others
have posed the following problem: Determine the least positive integer kg
(m, n) so that if a 0,1-matrix of size m by n contains k. g(m, n) ones then it
must have an « by B submatrix consisting entirely of ones. This paper improves
upon previously known upper bounds for k. g(m, n) by proving that ke,g(m, n) <
14+ (@ — D2+ (p+ Dl — Djo)n for each integer p greater
than or equal to « — 1. Each of these inequalities is better than the others for a
specific range of values of 7. Equality is shown to hold infinitely often for each
value of p. Finally some applications of this result are made to arrangements of
lines in the projective plane.

1. INTRODUCTION: DEFINITION OF PROBLEM AND SOME RECENT RESULTS

Zarankiewicz [10] and others have posed the following problem:
Determine the least positive integer k, 4(m, n) such that if a 0, 1-matrix
of size m by n contains k, s(m, n) ones then it must have a submatrix of
size « by B consisting entirely of ones. We restate the problem by asking
for the largest positive integer M, 4(m, n) so that there exists a 0, 1-matrix
of size m by n with M, 4(m, n) ones and no submatrix of size « by B
consisting entirely of ones. Clearly, M, 4(m, n) + 1 = k, ¢(m, n).

First we state some recent results on the problem of Zarankiewicz.
In Section 2 we prove the main result. We discuss equality in Section 3.
Finally in Section 4 we show some connections with arrangements of
lines in the projective plane.

Many results have already been established relating to the problem of
Zarankiewicz. Kovari, S0s, and Turdn [7] proved:

Myoq* + 4, 9%) = ¢*(q + 1), ¢))

for ¢ a prime number.
Reiman [8] showed

My o(m, n) < $(m + (m®* + 4mn(n — 1))'F%), 2
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188 STEVEN ROMAN
with equality in infinitely many cases, €.g., in (1) and in
My@®+9+ L@ +qg+1D)=¢+2¢+29+1, 3

for g a prime power.
Hyltefi-Cavallius [6] observed that (2) can be generalized to

My (m, n) = H(j — 1) nm(m — 1) + in*}'/2, @

Theorem 1 improves (4), hence must give equality in (1) and (3) (see
Fig. 1).

p-1

£l @ Elem,
P+l ‘o Py &
) ®

Fic. 1. For fixed «, B, m the graphs of 3 consecutive lines p — 1, p and p + 1
indicating the range of superiority for each p. The curved line is Eq. (2).
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Culik [3] has shown that for n > (8 — 1)(™)
Mo, 1) = (@ — D+ @ =D (7). ©)
R. K. Guy [4] has proved that for « = 2, 3
Mo, 1) = (o — Djodn + (8 — Dja) ('), ©

whenever I(m, o, B) < n < (B — 1)(7), where I(m, o, B) has the approxi-
mate value (8 — 1)/(x + 1)(7). He has also asserted Eq. (6) for all « and 8.
Our Theorem 2 establishes (6) for general « and B.

2. THE MAIN RESULT

THEOREM 1. If M, g(m, n) is the largest positive integer such that there
exists a 0, 1-matrix of size m by n with M, 4(m, n) ones and no submatrix
of size o by B consisting entirely of ones then

M, sm, 7 <(—f’§i)(';’) pletde=D, g
a—1

for all integers p = o — 1.

Proof. Let A be a 0, 1-matrix of size m by n with no submatrix of size
a by B consisting entirely of ones. Let M be the total number of ones in 4.
The theorem will be proved if we can show

g—1 (m)+(p+1)(a—1)n
L2d)° ’

for all integers p = o — 1.

Let j; be the number of ones in the ith column of A. Then M = Y7 j; .
If any column of A4 should contain less than « — 1 ones we may arbitrarily
add ones to that column until it has at least « — 1 ones without the danger
of creating a submatrix of size « by B consisting entirely of ones. Therefore,
we may assume j; = o« — 1 foralli = 1,..., n.

Now consider the set T of all m-tuples of zeros and ones each containing
exactly « ones. We will say any ¢ € T is incident with a column C of A4 if
whenever there is a one in the sth place of ¢ there is also a one in the vth
place of C. Since A contains no submatrix of size « by S consisting entirely

=~ E)
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of ones we see that any ¢ € T is incident with at most 8 — 1 columns of A.
We now count incidences of elements of 7 and columns of A. The ith
column of A4 is incident with exactly (%) elements of T, hence the total
number of incidences is Yy (). Therefore, we get

Y (k) <e-n(T). ®

This yields, for real a > 0,

S @il — 1)+ Ge— a4+ <aat @— 1) (™)

1

and since M = Y, j; we get
Y @G — D Gi—at ) —jl+ M <at @ —1)(7)
1

and for any real number ¢

SlaiGi— D Gi— e+ D) =t e+ M <aat =1 (7)) + en.
1
9
We now wish to consider the polynomial ©
@ =ax(x—1) - (x—a+1)—x+4c

If we can show for appropriate choices of a and ¢ that f(x) > 0 for all
integers x > a — 1 then (9) would yield

Mgaa!(ﬁ—l)(’:)Jrcn. (10)

To this end given any integer p > « — 1 we choose a and ¢ so that
f(p) =0 and f(p + 1) = 0. Once this is done we claim that f(x) > 0
for all integers x > o — 1.

From f(p) = f(p + 1) = O we get

ap(p—1) = (p—a+1)—p+c=0,
ap+Dpp—D(p—a+2)—(p+D+c=0,

SO

_ ! . e f=D+D
ap(p — 1) (p—a+2)° « :
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Note that @ > 0 and
o T —
fX=a)x(x—1x—s+1)~x—at+1)—1
1

T T —
where the (x — s 4 1) indicates that x — s 4 1 is deleted from the sth
term in the sum. We see that f'(x) is an increasing function for x > « — 1.
Therefore, f(x) is a convex function for x > « — 1 and since its only two
roots are consecutive integers, the claim is established.
So we have shown that for a = (1/ap(p — 1) == (p — « + 2)) and

¢ = ((p+ D(x— Djw)
M<a<x!(/3—1)(if)—l—cn

ie.,

~

B=1 (m), G De=D,
(ail) i i

Notice that Eq. (7) represents for fixed m, «, 8 and for varying p, an
infinite family of inequalities each linear in #. Figure 1 shows the range of
superiority for each p, as well as the relationship of Eq. (2) in case o = 2.

Notice also that the right-hand side of (7) may not be an integer while,
by definition, the left hand side must be. This implies that if (7) holds, so
does

M, om,n) < [(ﬁ—;—l—) (") + Q’Jr—%ﬂn , (7
o —1

where [x] is the greatest integer less than or equal to x. These same
considerations apply to Theorems 3 and 4 as well.

3. EquAaLiTY

By examining the proof of the theorem one sees that equality holds
in (7) for a particular value of p whenever there is a matrix of size m by
n with 37 () = (B — 1)(™) and with j; = porp 4+ 1 for all i = 1,..., n.
That is whenever each member of 7 is incident with exactly 8 — 1 columns
of the matrix and each column contains precisely p or p 4 1 ones.

By a tactical configuration Cfk, s, A, v] we mean a system of subsets
of a set E of cardinality v, having k elements each, such that every subset
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of E having s elements is contained in exactly A of the sets of the system.
We denote the number of sets in the system C[k, s, A, v] by Clk, s, A, v].
Then we see that equality holds in (7) for a particular p whenever the
configuration C[p, o, § — 1, m] exists and n = C[p, o, B — 1, m]
or whenever the configuration Clp+ 1,8 — 1,m] exists and
n=Clp+1,a,8—1,m]
Wilson [9] has shown that given positive integers p and 8 — 1 a .
Clp, 2, B — 1, m] exists for all sufficiently large m satisfying
B—Dm—-1)=0modp —1, an
B—Dm@m—1) = 0mod p(p — 1).

This means that for any two positive integers p and § — 1 if m is sufficiently
large and satisfies Egs. (11) then

m

2

M, 4(m, n) = _13__’71_( ) + (p—2|— D n,
for n = ((B — D/E)(S). So equality holds in (7) with « =2 and B
arbitrary for infinitely many values of m and n.

Furthermore, Hanani [S] has shown that, except for a CI[5, 2, 2, 15]
which does not exist, if 3 << p < 5 a necessary and sufficient condition
for the existence of a C[p, 2, B — 1, m]is that Eqgs. (11) are satisfied. Hence
equality holds in (7) with « = 2, B arbitrary and 3 < p < 5 whenever m
satisfies (11) and n = ((8 — 1)/(D))(3).

Now if ¢ is a prime power we know that the projective plane of order g
exists. The incidence properties of such a plane are those of a tactical
configuration with m = n = ¢* 4 ¢ + 1. This implies that equality
holds in () for m =n=4¢*+ g+ 1, « =B = 2 and p = g where ¢
is any prime power. Similarly, the affine plane of order ¢, g a prime power,
provides an example of equality in (7)form = ¢* + g, n = g%, a =B =2
and p = q. Also the inversive plane of order g, g a prime power, gives
equalityin (7)withm = ¢* + 1,n =q(¢® + 1),a = 3, = 2andp = q.

For general o we mentioned in section 1 that Culik has shown equality
holds in (7) for p = o — 1 whenever n = (8 — 1)().

We also have the result of R. K. Guy with a different proof:

THEOREM 2. Let T,,, .5 be the maximum number of subsets of size
a + 1 that can be packed into a set of size m so that no subset of size «
is in more than 8 — 1 of the subsets. Then for

max [E L ("), 8= D (™) — Tasmons] <n <@ (7)
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we have

m
o

M, o(m, n) = [B_;—l (

That is, equality holds in (T') for p = a.

Proof. We define an appropriate matrix of size m by n as follows.
Choose the first ¢ = [((B — 1)/a}(™) — n/a] columns to each contain
exactly « + 1 ones so that no m-tuple in T'is incident with more than 8 — 1
columns. We may do this since

B_l(z)gn implies ﬁ_l(m)<a+1n,

a+1 o o o
SO
t<;8—1 (m)—lgn
o « o
and
m
(B - 1) ( o ) - 0‘Tm+1.m,3—1 < n
implies
m
(/3 - l) ( o ) —n < 0LT’cz-i»-l,m.B—l ’
SO

-1l /m n
1< B (a)'—;<Ta+l.m,B—1-

Now the number of m-tuples in T incident with these columns is

T B LN (T s

e

We may fill the remaining columns of the matrix each with exactly « ones
in such a way as to avoid having any element of T incident with more
than B — 1 columns since

65 (7) - [E5H(7) - Zwrn > 22,221 (7)

(¢4 o4 o 4

=n—1_
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TABLE 1°
Right-hand Right-hand
side of side of
(7’) for (7) for
best choice best choice
m n M, (m,n) ofp. m n M, (m,n) of p.
8 8 24 25 12 19 60 60*
8 9 26 27 12 20 61 62
8 10 28 29 12 21 63 64
9 9 29 31 13 13 52 52%
9 10 31 33 13 14 53 54
9 11 33 34 13 15 55 56
13 16 57 58
10 10 34 35 13 17 59 60
10 11 36 37
10 12 39 39% 13 18 61 62
10 13 40 41 13 19 64 64
*
10 14 42 4 o » 6 o
10 15 44 45 13 2 69 70
10 16 46 46*
10 17 47 a7*
14 14 56 57
1 1 39 40 14 15 58 60
1 12 42 42% 14 16 60 62
1 13 44 44* 14 17 63 64
11 14 45 46 14 18 65 66
11 15 47 48
14 19 68 68*
11 16 50 50% 14 20 70 70%*
11 17 51 52 14 21 T2 72%
11 18 53 54 14 22 73 74
11 19 55 56 14 23 75 76
12 12 45 46 15 15 60 63
12 13 48 48* 15 16 63 66
12 14 49 50 15 17 66 68
12 15 51 52 15 18 69 71
12 16 53 54 15 19 72 73
12 17 55 56 15 20 75 5%
12 18 57 58 15 21 77 T7*
16 20 80 80*

e Places where Equality Holds in (7°) are Marked with an Asterisk (*). In some of
these cases p = 3. The values of M, ,(m, n) are from R. K. Guy [4].
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TABLE 2¢
Right-hand side
of (7') for best
m n M, (m, n) choice of p.
6 6 26 26*
6 7 29 30
6 8 32 33
6 9 36 36*
6 10 39 40
7 7 33 35
7 8 37 38
7 9 40 41
7 10 44 45
7 11 47 48
7 12 50 51
7 13 53 55
7 14 56 58
7 15 60 61
7 16 63 65
7 17 66 68
7 18 69 71
7 19 72 74
7 20 75 76
7 21 78 79
7 22 81 82
8 8 42 43
8 9 45 47
8 10 50 51
8 11 53 55
8 12 57 58
8 13 60 62
8 14 64 65
9 9 49 52
9 10 54 56
9 11 59 60
9 12 64 64*
10 10 60 64

¢ Places where equality holds in (7”) are marked with an asterisk (*). In some of these
cases p = 4. The values of M, ¢(m, ) are from R. K. Guy [4].
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The total number of ones in this matrix is now

@0 [BE () 2] v [BTE(T) - 2]

~ () - e = P (D) + 5]

So we see equality holds in (7') with p = «.
Note that fora = 2and 8 = 2

1. {Bmlm — DIl for m s 5 mod 6,
Bl A Bm[im — D]] — 1 for m = 5mod 6,

$0 Tjy,m,, is approximately equal to 4(7), and so equality holds in (7’)
with p = 2 roughly for

1/m m

3 ( 2 ) SrS (2 )

which is the interval of supremacy for p = 2 (see Fig. 1).

Tables 1 and 2 show that equality may hold for arbitrary small values
of m and n even when p = o + 1 (here o = 3, 4). But in these cases
equality may also fail to hold.

4. ARRANGEMENTS

An arrangement of n lines is defined to be any collection of # lines in
the projective plane. For such arrangements we ask two questions.

First, given an arrangement of » lines and given any m distinct poly-
gonal regions thereby determined, say R, ,..., R,, , if we denote by s(R,)
the number of edges on R; then what is the maximum of 3} s(R;)? We
prove a generalization of a result of Canham [2].

THEOREM 3. If A is an arrangement of n lines, R, ,..., R,, m distinct
polygonal regions determined by A and p(R;) the number of edges on R; then

Y s(R) <3 (’;) -+ L —; 1 n  for all positive integers p.  (13)
1

Proof. Consider the incidence matrix M of A defined as follows.
M is a 0, I-matrix of size m by n with a one in the {, jth place if and only
if region R; has an edge belonging to line L; . Now it is an easy geometric
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fact that no 5 lines can each contribute an edge to 2 distinct regions.
Therefore, M has no submatrix of size 2 by 5 consisting entirely of ones.
So Eq. (7) holds with o =2 and 8 = 5. |

Canham noted that for p = 1 equality may be attained for each
n > 4(3). Little is known about the maximum value of 37 s(R,) for
n < A(Z). If we write a(m, n) = max Y s(R;), where the maximum is
taken over all arrangements with # lines, then it is easy to check that
a3, 6) = 15, a(3,7) = 16 and a(3, 8) = 18. The right hand side of (13)
gives a(3, 6) = 15 and a(3, 8) = 18 with p = 2. When the greatest integer
function is added, the right-hand side of (13) also gives a(3, 7) = 16. As
far as the author knows, no other values of a(m,n) are known for
n < 4(%).

Given an arrangement of n lines and given any m distinct vertices
U1,..., Uy Of the arrangement we may also ask for the maximum of
3.1 m(v;), where m(v;) is the number of lines of the arrangement passing
through v, . We prove the following:

THEOREM 4. If A is an arrangement of n lines, Uy 5eeey Uttt distinct
vertices of A, with m(v;) equal to the number of lines of A passing through v, ,
then

m

Yme) <o () +5 0+ O (14)

1
Jor all positive integers p.

Proof.  Since no two lines of A can have the same two vertices on them
the incidence matrix of lines and vertices defined analogously to that in
the proof of Theorem 3 has no submatrix of size 2 by 2 consisting entirely
of ones. Therefore, (7) holds with « = 2 and 8 = 2. ||

For n > () the arrangements determined by m points, no 3 of which
are collinear supply examples of equality in (14) for p = 1. If one takes the
arrangement determined by m points in the plane, no 4 of which are
collinear, then every column of the incidence matrix so obtained has
Ji = 2, 3. Also, every m-tuple in T is incident with exactly one column of
the matrix (i.e., every pair of the m points is on exactly one line) so equality
holds in (14) for p = 2.

Burr, Grunbaum, Sloane [1] have provided examples of such arrange-
ments with the number of collinear triples among the m points equal to
1 + [¥m(m — 3)] hence with n = (3) — 2(1 -+ [m(m — 3)]) which is
approximately ((m + 3)/3(m — 1))(3) — 2. Note that this is approximately
the lower value (n = (%)) of supremacy for p = 2. (see Fig. 1).
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If one takes the examples of Burr, Grunbaum and Sloane and decreases
the number of collinear triples by moving some points, examples of
equality in (14) can be created with  larger than (%) — 2(1 + [km(m — 3)].
The exact values of n so obtained have not been established.

Finally, we note that since in the arrangement determined by any m
points in the plane there must exist many (at least (3/7) m) lines containing
only two of the m points, the proof of Theorem 1 indicates that it should be
possible to improve Eq. (14).
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