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We can derive another recurrence for the exponential polynomials as follows.
If o is an umbral operator, then

(AR = a*(AF) a*(A)Y.

Applying to a polynomial p(x) and using the properties of adjoints and deriva-
tions:

AV anp(a), = (AR | malulo*(A)Y) p()>-
Therefore,
axp(x) = xalp(a*(A4)) p(x)).

Now if we take a: 2" — ¢,(x), then a*(4) = e* — ¢ and so p(a*(4)') = EL.
Setting p(x) = x™ gives

¢n+1(x) - x(¢ + l)n’

which, in terms of coefficients, gives the Stirling numbers recurrence

St +1,k) =Y (?)S(i,k—— 1).

ix0

9. SHEFFER SEQUENCES

So far, we have no explicit formula for shift-invariant operators. In obtaining
an explicit formula for (L), we are led to a new class of polynomial sequences.
A polynomial sequence s,(x) is a Sheffer sequence relative to a sequence p,(x)
of binomial type if it satisfies the functional equation

n

5w +3) = ¥ () 5 acal)

r=0

for all n 2= 0 and for all ye K.
Some characterizations of Sheffer sequences follow. The proofs follow a
familiar pattern, and are therefore omitted.

PropositioN 9.1. A polynomial sequence s,(x) is a Sheffer sequence if and
only if there exist a sequence of binomial type p,(x) and an invertible shift-invariant
operator P such that

Pn(x) = Psn(x)
for alln > 0.
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ProposITION 9.2.  The following are equivalent for a polynomial sequence s,,(x):

(a) The sequence s,(x) is a Sheffer sequence.
(b) There exists a delta operator Q such that

Qs'n(x) - nsn-l(x)
foralln = 1.
(c) There exists a delta functional L. and an invertible linear functional N

such that
(NLE | s,(x)y = nlé, ;,

for all n, k = 0.

If O is a delta operator and QOs,(x) = ns,_4(x), we say that s,(x) is Sheffer
for Q. Moreover, if s,(x) is a Sheffer sequence with respect to p,(x), the associated
sequence for Q, then s,(x) is Sheffer for Q, and conversely. If 7' is an invertible
shift-invariant operator, and s,(x) is Sheffer for Q, then Ts,(x) is also Sheffer
for Q, and T7s,(«x) is Sheffer for T71Q.

Given a delta functional L and an invertible linear functional N, there exists
exactly one polynomial sequence s,(x) satisfying

(NLE [ s,(x)) = nl 8,1,

namely, the sequence s,(x) = u(N)™p,(x), where p,(x) is the associated
sequence for L. We say that s,(x) is the Sheffer sequence for N with respect fo L,
or the (N, L)-Sheffer sequence.

A pair (N, L), where N is an invertible linear functional and L is a delta
functional, determines a unique Sheffer sequence s,(¥) in this way.

TreoREM 10 (Second Expansion Theorem). Let s,(x) be the (N, L)-Sheffer
sequence, and let Q = (L), S = p(N). Then

(a) Every linear functional M can be uniquely expanded into the convergent
series

M = z KM | silx)> LEN.
k!
=0
(b) Every shift-invariant operator T can be unmiquely expanded into the
convergent series

(c) Every polynomial p(x) can be uniquely expanded into the finite sum

po) — 3 L2,

k>0
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We can now give explicit formulas for shift-invariant operators:

TuaeoREM 11. (2) Let s,(x) be a Sheffer sequence relative to the sequence
Pofx) of binomial type. Every shift-invariant operator u(L) can be represented by
Zin
L) u(x) = Y. () <L 12> sn sl

k=0

(b) Conversely, suppose that for a delta operator Q = p(L) there is a sequence
of constants a,, such that

Os (%) = éo (Z) Sy (%)

Then s,(x) is a Sheffer sequence relative to a sequence p,(x) of binomial type,
and a, = {L | p,(x)> for alln = 0.

Proof. (a)Suppose p,(x) is the associated sequence for the delta functional M.
Then

BT 5,(3) = () 1)
= 3 (1) P 1D 50

By a closure argument, we may replace M’ by any linear functional. Q.E.D.

(b) Define the operator T by Ts,(x) = ns,_4(x) for n > 1 and Tse(x) = O.
Then s,(x) will be a Sheffer sequence if T is shift-invariant. But
S (n
TOsi(x) = 3. (7) @ sn-nlx)

n—1

= go (Z) ar(n — k) sp_g(x)
ST s P

= ann_l(x) = OTs,(x),

and then Proposition 7.4 implies T is shift-invarjant. Since s,(x) is a Sheffer
sequence, part (a) implies a;, = (L | p,(x)>.

We define the conjugate Sheffer sequence of the pair (N, L) as the polynomial
sequence

NL* n
ralx) =Y S——Fl—ﬁlx’"

k>0

607/27/2-4
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Not unexpectedly, it turns out that every conjugate Sheffer sequence is
Sheffer, and conversely. The proofs of Proposition 9.3 and Theorem 12 below
are similar to those of Proposition 4.4 and Theorem 4.

ProrosiTioN 9.3. 4 polynomial sequence

n
Sﬂ(x) = Z cn,k‘xk
k=0

is a Sheffer sequence with respect to the sequence of binomial type

Pul®) = ) ap
£=0

if and only if

(i :_]) Cn,ivi = Z (Z) Cr,iln—k,j + (xxx)

k=0

‘THEOREM 12. (a) Every conjugate Sheffer sequence is a Sheffer sequence.
(b) Every Sheffer sequence is a conjugate Sheffer sequence.

Every pair (N,L) is associated with two Sheffer sequences, its Sheffer
sequence s,(x) and its conjugate Sheffer sequence r,(x). We say that r,(x) is
reciprocal Sheffer to s,(x).

Similarly, a Sheffer sequence s,(x) is associated with two pairs, namely,

the pair (M, L) for which s,(x) is the Sheffer sequence, and the pair (Aﬁ,),

for which s,(x) is the conjugate sequence. We say that (JWTL) is the reciprocal
pair to (M, L).

Our goal now is to give a solution to the connection constants problem for
Sheffer sequences. We proceed in a manner analogous to that for sequences
of binomial type.

A Sheffer operator is a linear operator A defined by A: a” — s5,(x), where
sy(x) is a Sheffer sequence. If Ps,(x) = p,(x), where p,(x) is of binomial type,
then

A=Plog

where « is the umbral operator a: & — p,(x). We infer

'THEOREM 13.  An operator X is a Sheffer operator if and only if its adjoint
is of the form B o uw(M—)*, where B is a continious automorphism of the umbral
algebra, and u(M=Y)* is multiplication by an invertible linear functional M1,

Proof. If Ais a Sheffer operator then A = P10 a, where P = u(M). Taking
adjoints and applying Theorem 5 gives the result. The converse is obvious.
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ProposrrioN 9.4.  (a) A Sheffer operator maps Sheffer sequences into Sheffer
sequences.

(b) If A: 5,(x) — rp(x), where 7,(x) is (N, R)-Sheffer and s,(x) is (M, L)-
Sheffer, then A is a Sheffer operator and NX(NR¥y = ML* k =0,1,2,....

We come now to the principal question for Sheffer sequences. Given two
Shefter sequences 7,(x) and s,(x), determine the connection constants ¢, ; in

ru(x) = i Cp,151(%).

We know that the polynomial sequence

n
tn(x) — Z Cn,kxk
k=0

is also Sheffer. Thus the problem of computing the connection constants
reduces to the problem of determining the pair of linear functionals which
determine the sequence #,(x). Stated in other terms, the problem is to determine
the pair of linear functionals corresponding to the umbral composition of two
Sheffer sequences. We shall state the solution in terms of indicators.

ProrostrioN 9.5, If the pair (M, L) with Sheffer sequence s,(x) has indicators
(f(1), &(t)), and the pair (N, R) with Sheffer sequence t,(x) has indicators (h(t), k(t)),
then the pair of the Sheffer sequence s,(t(x)) has indicators

(f(2) h(g(2)), R(g(1)))-

Proof. Let (.Y, Y) be the desired pair of linear functionals. Then clearly

A p: f(A) g(A) — A,
Aiv.ry: B(A) R(AY — A*,
and
Aky XVE— 4
Therefore,
XVE = Q) () = (o)™ M) (49)
== (M )t (A(A) k(A
= (M) (2 )7 (R(A) R(AY)
— Mh((og*)™ A R((o *)0 Y
= MIL) k(LY*
= f(t) h(g(1)) k(g(t))". OED.
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CoRrOLLARY 1. If the pair (M, L) has indicators ( f(t), g(t)), then the reciprocal
pair (M, L) has indicators

(T ¢ 0)-

COROLLARY 2.  Suppose s,(x) is Sheffer for (M, L), with indicators ( f(¢), g(t))
and r,(x) 1s Sheffer for (N, R), with indicators (h(t), k(t)). If
Ta(%) == t.(s(x))

Jfor a polynomial sequence t,(x), then t,(x) is Sheffer for the pair with indicators

HeM) o
(T Heo))

The following theorem is a recurrence formula for Sheffer sequences.

THEOREM 14. Let s5,(x) be a Sheffer sequence relative to the associated sequence
pa(x) for O = w(L), and let Ps,(x) = p,(x). Then

Sna®) = (PO(P) -+ 01) sn(x).
Proof. First notice that
Sna(®) == Ppyg(x) = P10, py(%) — P10 Psy(x).
From part (b) of Theorem 7, we have
P9, P = (P20, — 6, P-Y )P + 6, = Poo(P) + 6,

hence the conclusion.

A wide variety of polynomial sequences studied since Euler turned out
to be Sheffer sequences, and no computer list can be drawn here. We shall
only give a few examples to illustrate how the seemingly endless variety of
identities is in fact the repetition of a few general formulas.

Sheffer sequences relative to the sequence x* are called Appell sequences.
Some of the best-known instances are:

The Bernoulli polynomials, defined by the functional

o lp = [ ' p() d.

Thus,

or, setting | = u(y), in operator notation B,(x) = Jta". All identities for
Bernoulli polynomials follow from the definition and from the above theory.
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For example, an application of the Second Expansion Theorem gives the
Euler-MacLaurin expansion formula

<€a Bl (x)/ :
o A’v’

or more explicitly
o) = T 52 [ o
Similarly, the Euler functional e defined by

el payy = X120

gives the Euler polynomials e,(x) = p(e)™* x* and again the Second Expansion
Theorem delivers Boole’s summation formula

26 = ¥ D (o poogay.

k>0

Along the same lines, the Boole polynomials are the Sheffer set {,(x) =
p(e)(x), , and the corresponding expansion goes by the name of Boole’s
second summation formula

plx) = Z l’“(“) (e | A¥p(x)).

'The Bernoulli polynomials of the second kind are the Sheffer sequence defined
by b,(x) = J(x), , so that, for example, the identity

n

B.0) = Y s(m, B)/(k + 1)
k=0
is trivial in the present context. The corresponding expansion gives a variant
of the Euler-MacLaurin formula where derivatives are replaced by differences.
The umbral composition of Appell sequences reduces to the following
simple rule; The Appell sequence r,(x) = t,(s{x)) is the sequence T.Sx",
where #,(x) = Tx" and s,(x) = Sx™.

10. FACTOR SEQUENCES

An inverse formal power series—or inverse series for short—is a formal power
series of the form

Ms

fl) =242+

apx

g
il
-
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The family I" of all such formal power series is an algebra under ordinary
addition, formal multiplication and multiplication by scalars; the algebra
does not have an identity. The series f(x) is said to be of degree —u if a, —
a, = =a, , =0, but a, 5 0.

In a sequence f_,(x) of inverse formal power series it is tacitly understood
that £ ,(x) is of degree —n, forn =1,2,....

We indicate sequences of inverse formal power series by the notation f_,(x),
n =1,2,.., in contrast to polynomial sequences p,(x). We endow I" with a
topology which stipulates that a sequence f_,(x) = ¥, ; 4, % converges
to f(x) = ¥, a,x~* if, for each &, there exists an index n; such that if n > n,
then a, ; = a,. Under this topology, I" becomes a topological algebra, and
every sequence f_,(x) spans; that is, every inverse formal power series f(x)
can be uniquely expressed as a convergent series f(x) = 3, a,f (x) for
suitable constants a,, .

Recalling that

)=o) () —a

for a scalar a, we set
o (—N
(JC 4 a)—n — Z ( i )akx.—n—kY
k=0
the right-hand series being convergent. One easily verifies that

(x +ay™x + a)™ = (x + a)~™ "

The symmetry in x and a of the left side is deceptive. The variable a ranges
over all scalars, but x is not a variable at all, unlike the case of polynomials.
Unlike polynomials, one may not ‘“‘evaluate” an inverse formal power series
by giving x a constant value.

For any inverse formal power series f(x) = Y., @ %, we may define
flx 4+ a)as

o

Euf(x) = Y ay(x + )",

k=1

since the series on the right converges. The resulting operator E% is again
called the translation operator. .

The derivative operator D on the algebra I' is defined by setting Da—" =
—nx~"1 and extending to all of I" by closure.

We introduce the notion of factor sequence, which is in some ways analogous
to a Sheffer sequence. Let f (x), n = 1, 2,..., be a sequence of inverse formal
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power series, where f_,(x) is of degree —n. We say f_,(x) is a factor sequence
relative to the sequence p,(x) of binomial type if it satisfies:

Sl @) = Y () i@ foes), *)

k=0

for all n = 1, 2,... and for all scalars a € K. The identity (x) is called the factor
(binomial) identity. If p,(x) is the associated sequence for the delta functional
L, we say that f_ (x) is the factor sequence associated to the delta functional L.
Caution: again the symbols & and @ cannot be interchanged in (x).

The simplest factor sequence is the sequence x™, n = 1, 2,..., which satisfies
the factor (binomial) identity:

o0

(x +a)y™ = Z (_kn) R

k=0

Our first goal is to establish an algebra isomorphism from the umbral algebra
P* into the algebra of linear operators on I'. For any linear functional L € P*,
we define the linear operator (L), mapping I" into I" by

oLyxn =Y (7)< 1y amne (+%)

k=0

We must show that ¢(L) can be defined on all inverse formal power series.
To this end, if f(x) = Y%_; ¥ %, set o(L) f(x) = Spr1 aro(L) x~*. Since the
degree of o{L)x % is at most —*k, this series is convergent. In other words,
we may extend definition (%) by closure to all of I'. Thus, o(L) is a continuous
operator on I,

The dual space I'* to I, that is, the vector space of all continuous linear
functionals on T, is easily described. It consists of all linear functionals M on
I' such that (M| x> = 0 for all nonnegative integers n, except for a finite
number.

Now consider o(L)*, the adjoint of the linear operator o(L), acting on the
dual space I'*.

For any continuous linear functional M in I'*, we have

Co(L)* M | &~y = (M | o(L) x>

— <M ¥ WAED x—”—k>

=<0
(7)) <L iy, (sx)

Il

ll
its

0
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Moreover, in (%#*), the sequence x~" can be replaced by an arbitrary factor
sequence f_,(x):

TuaroreM 15. Let L be a linear functional in P* and let f_,(x) be a factor
sequence relative to the sequence p,(x). Then, for any continuous linear functional
M in T'*, we have

LY M [l = . () <L B | (-

k=0

Proof. Let I'(x,y) be the topological algebra of all inverse formal power
series in the variable x, whose coefficients are polynomials in the variable y.
Define the map L,M,, of I'(x, y) into the field K by

LM(y'x~%) = (L[ %M | x7%).

Since any element f(x,y) in I'(x,y) is of the form f(x,y) = Yy, pu(¥) 7%,
where p,(y) is a polynomial in y, and since (M | x~*) = 0 for all but a finite
number of 7%, we may define

Lmef(x) y) = Z L | pilx)><M | X7k,

k>0

the sum on the right being finite. This makes L, 3/, a continuous linear func-
tional on I'(x, y). Thus equation (%) becomes

lo(LY*M | x> = L M (x + y)™".

Since o(L)*M is in I'*, it follows that {a(L)*M | x~™) = O except for a finite
number of integers n > 0. For f(x) = X, a,x~* we have

o]
Y akx—k>
k-1

Ly M| f)y = (ol)* M
= 3 aolly M1

= Z achvMac(x +y)_k

k=1

== Lny Z ak(x +.y)_k

k=1

= L,M,f(x + ).



THE UMBRAL CALCULUS 149

Finally, for the factor sequence f_,(x), we have
CoLY* M| f_n(*)y = LM f _o(x + )

— LM, ,fi, (;") Pi(3) foni()

- i (_kn) L] P <M | f o, i(x)>. Q.E.D.
k=0

An immediate corollary is a characterization of the shift invariant operators,

COROLLARY 1. Let L be a linear functional in P* and let Sfn(x) be a factor
sequence relative to the sequence p,(x). Then

Do) = 3 () L) fonn)

k=0

ProposiTION 10.1. Let L and M be linear functionals in P* and let N be a
continuous linear functional in I'*. Then

(L) (o(M)*N) = o{LM)*N.

Proof.  On the one hand,

Nk

(LM N a7y = ¥ (7)) LM | 5N |ty

k

ke

3

k=0 j

\.
il
]

l

k

(?)C) LA | SN | sy,

0
On the other hand,
(o(L)* (o(M)* N) [ a—)

o

=¥ ( 7’) (L] #75o(M)* N | a7

= io (;”) L a7y ; (_ni_ ]) (M | &N | x=n=i=iy,

.
I

and letting & = ¢ -/, this equals

é, (—J”) L |y ]g (*k”—:;]) (M | &k=5(N | 3=nFy

-3y (7)) @ rwscan jwon sons,

k=0 j=0
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We can now prove

ProposITION 10.2. The map L — o(L) is an algebra monomorphism_from
the umbral algebra P* into the algebra of all continuous linear operators on I.

Proof. We have already seen that o(L) is continuous. If o(L) =0, then

0 =— IYx " = < —n L | xk U-—n*k
Ay = 3 () Lints

and thus (L | #*) = 0 for all & > 0, so that L = 0. Therefore o is one-to-one.
Finally, for any continuous N in I™* and any inverse formal power series f(x)

in I', we have

(N {o(LM)f(3)) = (o(LMY*N | f(x))
— (oL (o(MY*N) | f(x)) = Co(M)*N | ofL) f(x))
— (N | o(M) oL) f(x)>-

Thus, o(LM)f(x) = o(M)o(L)f(x) and so o(ML) = o(LM) = o(M)o(L)
Therefore o preserves multiplication and the proposition is proved.
We call the image of o the algebra of shift-invariant operators on I', and

denote this algebra by £.

COROLLARY 1. A shift-invariant operator T in Q is invertible if and only if
Tf(x) is of degree —1 whenever f(x) is of degree —1.

Let p,(x) be a sequence of binomial type, and let f_;(x) be the first member
of a factor sequence, and thus of degree —1. If we choose an arbitrary sequence
of constants ¢, £ =0, 1, 2,..., and set

Tf ) = Y (;l) eafa-n(¥)-

2

then there exists a unique linear functional L in P* such that (L | py(x)> = ¢; .
Thus, setting

Tf o) = 3 ('kn) (%)

%0

we obtain a shift-invariant operator. In summary:

ProposrTioN 10.3. Given a factor sequence f_,(x) and an inverse series
g(x), there is a unique shift-invariant operator T such that Tf_(x) = g(x).

We are now able to give the following characterization of the shift-invariant

operators on I,
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ProposrrioN 10.4. A4 linear operator T on I is shift-invariant if and only
if it is continuous and TE® = E*T, for all constants a € K.

Suppose T is a continuous operator on I" with TEe — E*T for all ac K.
Define constants ¢;, by

Tal = i (—kl) cpx1IH,

k=0

By the previous proposition, there is a unique shift-invariant operator S for
which Sx=* and T, Thus the operator S — T is continuous, and satisfies
(S —T)* = E(S — T) and (S — T)x = 0. Therefore we have

0=EYS —T)x?t = (S —T)Exx1

=(S—T) ;go (‘kl) aly-1-%

_ éo (7)) s - 1wt

for all ae K. By alternatingly setting a = 0 and dividing by a we conclude
that (S — T)a"* = 0 for all 2 > 0. Thus S = T. Q.E.D.

We define a topology on the algebra of shift-invariant operators £2 as follows.
A sequence T, of operators converges to the operator T if given any inverse
formal power series f(x), and any continuous linear functional P in I'*, there
exists an index m, such that if m > my then (P| T, f(x)> = (P | Tf(x).
Under this topology, 2 is a topological algebra. Moreover, we have

Propostrion 10.5.  The isomorphism o, mapping P* onto Q, is continuous.

Proof.  Let L,, be a sequence of linear functionals in P*, with L,, converging
to the zero functional. Then if P is a continuous linear functional in I'*, we
have (P|x7*, = 0 for all but a finite number of exponents & > 0. Thus
we may choose m, such that m > m, implies <L, |x*> = 0 whenever
{Plx7% £ 0. Then, if m > m,,

Plo(Ly) x> = 3 (") Ll #P | anry
k=0

=0

foralln > 1. Thus (P | o(L,,) f(x)> == O for all inverse formal power series f(x).
We can now prove the Expansion Theorem for shift-invariant operators on I'.
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Tueorem 16 (Expansion Theorem). Let T = o(M) be a shift-invariant
operator, and let Q = o(L) be a delta operator, with associated sequence p,(x).
Then

Proof. 'The conclusion follows after applying the (continuous) isomorphism
o to the corresponding expansion of the linear functional M in powers of the
delta functional L.

We call a shift-invariant operator Q a delta operator if Q = o(L) for some
delta functional L.

ProPOSITION 10.6. The sequence of inverse formal power series f_,(x), where

the degree of f_,(x) is —n, is a factor sequence if and only if there exists a delta
operator Q such that

Of nlx) = —nf_p_4(x).

Proof. If f_,(x) is a factor sequence relative to the associated sequence
Pa(x) for the delta functional L, then

ADVFos) = 3 () <L) st

w0

= kgo (—};n) Ok 1fnr(%)
= —nf_n4(x).

Conversely, if Qf ,(x) = —nf_, ,(»), for some delta operator Q, then if
Pa(%) is the associated sequence for Q, by the Expansion Theorem,

Z Pl a) OI‘

and hence

Foal + @) = z 249 i (x)

= 3 () 2@ L.

k=0

Thus f_,(x) is a factor sequence.
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CoroLLARY 1. Given any inverse formal power series f_(x) of degree —1,
and a sequence p,(x) of binomial type, there is a unique factor sequence f_,(x)
Sor which f_\(x) is the first member.

To preserve the analogy with Sheffer sequences, if Q is a delta operator,
and Qf ,(x) = —nf_,_,(x) we say that f ,(x) is a factor sequence for Q. More-
over, if f_,(x) is a factor sequence relative to p,(x), the associated sequence
for e71(Q), then f_,(x) is a factor sequence for Q, and conversely. By the previous
proposition, if 7" is an invertible shift-invariant operator and f_,(x) is a factor
sequence for Q, then Tf_,(x) is also a factor sequence for Q, and T"f_,(x)
1s a factor sequence for TQ.

Suppose f_,(x) and /_,(x) are factor sequences relative to the sequence
Pu(x) of binomial type. Then by Proposition 10.3, there exists a shift-invariant
operator T for which Tf ,(x) = h_,(x). But since Tf_,(x) is a factor sequence
relative to p,(x), the previous corollary implies Tf_,(x) = h_n(x). Thus any
two factor sequences relative to the same sequence of binomial type are related
by a shift-invariant operator.

The correspondence between linear functionals in the umbral algebra and
the shift-invariant operators on I can be recast in a suggestive form as follows.
Again we consider the algebra I'(x, ¥) of inverse formal power series in the
variable & whose coefficients are polynomials in the variable y. If T = o(L)
is a shift-invariant operator on I, we denote by the same letter T' the operator
p(L), operating on the vector space of polynomials in the variable y. Then
the identity

<]

Tf o+ a) = ¥ (") Ceal 23> Tfoncn()

k=0

=3 () kD f)

can be suggestively rewritten in the form

o @

L )00 s = 3 (57 T o),

~ ; — J
In other words, the action of a shift-invariant operator on a factor sequence
can be “transferred” to the corresponding sequence of binomial type.

Proposition 10.6 shows that there is a strong analogy between factor sequences

and Sheffer sequences. It is natural to single out those factor sequences which
are the analogs of sequences of binomial type. We are led to define the associated
factor sequence for a delta operator Q as the unique factor sequence f_,(x)
for Q = o(L) whose first term is

Fals) = ¥ (<P CE |t
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If we define the derivative of Q = o(L) to be Q' — o(6,4L), then since ¢,L
is invertible, so is Q’, and we have

Jal®) = O'a .

We come now to the explicit computation of associated factor sequences:

THEOREM 17 (Transfer Formulas). Let Q = DS be a delta operator on T,
Then if f_,(x) is the associated factor sequence for T, we have

(1) fon(®) = Q'S Tamm,
(2) fon(x) = xSmenL,

Proof. (1) Let g_,(x) = Q'S™'x~". Then Qg_,(x) = —ng_, ,(x) and so
by Proposition 10.6, g_,(x) is a factor sequence, relative to the associated
sequence for o!(Q). Moreover g_,(x) = Q'x~! = f_,(x) and so by Corollary 1
to Proposition 10.6, g_,(x) == f_(x).

(2) Letting o(M) = S, the following string of identities verifies the
equivalence of the right-hand sides of (1) and (2), thus proving part (2),

'Sy o(8 (AM) Mr=1) x—n

Bl

=Y (;n) (0 (AM) M7=t | xky y=n—k

k=0

-y (”];”) M+ A8 M) Mn=11 32 y=n=k

k=0

(—n) n-+k
.k

Ms

(\/J,In J xk> A~k
k

i
=)

(_"k-— 1) Y

s

k=0

o(M") a1 == xSy,

=<

CorOLLARY 1. Let f_,(x) be the associated factor sequence for the delta
operator Q and let g_,(x) be the associated factor sequence for the delta operator
R = OP, where P is invertible. Then

(1) gon(®) = RP*YOQ') fp(),
(2) g-n(¥) = &P7af_y(x).
Proof. Let Q = DS and R = DT, where S and T are invertible operators,
and P = S-'T. To prove part (1), we observe that part (1) of Theorem 17 gives

SO f(x) = a7 = T YRY T g (x).
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The result follows by solving for g_,(x). Part (2) is proved in the same manner
using part (2) of Theorem 17.

Since any two delta operators Q and R are related by QP = R for some
invertible shift-invariant operators, Corollary 1 relates any two associated

factor sequences.
The following corollary is immediate from Theorem 17.

CoroLLARY 2. If f_,(x) is the associated factor sequence for the delta operator
Q == o(L), and if L == AM, we have

0

Fol) = Y (" s v

k=0

i N A N
F B

k=)

The Transfer Formula allows us to compute explicitly the coeflicients of a
factor sequence.

COROLLARY 3. Let g_,(x) be a factor sequence relative to the delta functional
L = AM, and let g_,(x) = Tf_,(x), where f_,(x) is the associated factor sequence
Jor L and T = o(N). Then

SR A
X )2 l/

g_n(x) = i (—1* ﬂ]i), Sk,

n!
Proof. The Transfer Formula gives:
gn(®) = Tf_(x) = To(L' M) x~7

= U(A‘YL/Alnil) AL — Z (_;en\) <I\,~L’J[?é71 ‘! xk> P %
k=0 ‘

<« TOTnY | antk—1
LS p @y e
k=0

n!

We next derive a recurrence formula for the associated factor sequence:

CoroLLaRY 4 (Recurrence Formula). If f_,(x) is the associated factor
sequence for the delta operator Q, then

fona(®) = Qa7 (x).
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Proof. By the second formula in the preceding theorem we have

fon() = xSrx—t
and so

O'x7f a(x) = Q'S

which, by the first formula, equals f_, ().

Given an invertible shift-invariant operator T and a delta operator Q, with
associated factor sequence f,(x), we say that the factor sequence g_,(x) =
Tf (%) is the (T, Q)-factor sequence. Clearly, any such pair (T, Q) determines
a unique factor sequence, and conversely. Notice that, in the theory of Sheffer
sequences, the role of T is played by 71

Now we derive a recurrence formula for factor sequences, which is the
analog of Theorem 14.

If f_,(#) is the associated factor sequence for the delta functional M = ¢ ((Q),
the shift 0, , is the linear operator on I" defined by 0,f_,(x) = f_,1(x), for
n 2= 2. Notice that 0, is not everywhere defined on I'. Now if T is a shift-
invariant operator on I, by the Expansion Theorem we may expand T in
powers of O, say T = g(Q). It is straightforward to verify that on the algebra I
of inverse formal power series of degree at most —2, the operator 70, — 6,7
satisfies

To — 05T = g/(0).

Thus, on I, T8, — 0,7 is shift-invariant and we denote it by 9,7.

ProrositioN 10.7. Let g_,(x) be a (T, Q)-factor sequence, and let f_,(x)
be the associated factor sequence for Q. Then

g~'n+l(x) - (T—laOT + 00) g771(x),
forn = 2.

Proof. 'The result follows from

Zoni(®) = Tf ,(x) = TOof n(x)
= T0oT g _n(x) = (T8o — 0oT)T" + 00) g-n()
= (T80T =+ 80) gn(%).
We can now study the wumbral composition of two factor sequences, say

Fon(®) = s € * and g_,(x). The umbral composition f_,(g(x)) is the
sequence

f~n(g(x)) = i Cn,kgAk(x)'

k=n
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Lemma 1. If L and M are delta functionals in P*, then
oy [ = § L CIn [ atisqapess | o,

Proof. Let p,(x) and 4.(x) be the conjugate sequences for L and M,
respectively. Then by Proposition 6.2, M oI, — If:]?l is the conjugate sequence
for g,(p(x)). This yields the following string of identities:

N (Mo L) |y
!

Lo

2t = gui(p(x))

]l

M| gty I L] g

=0

Ll B (M| a1 [ 27
=Lk 7 ¥
=0 J=1l

n+i 1 n+i—1 <Mk+z ‘ xn+i><Ll [ xk+l>
=Yy = l Xl
EO n L}::) CEN)]

Comparing the coefficients of ¥ in the first and last formula gives the result.
We can now prove

THEOREM 18. If f_,(x) is the associated Jactor sequence for the delta operator
Q = o(L) and if g_,(x) is the associated factor sequence for the delta operator

R = o(M), then the umbral composition J-n(g(x)) is the associated factor sequence
Jfor the delta operator o(M o L).

Proof. By Corollary 2 of Theorem 17 we have

hod In n+k
foo) = T (=1 LD

and
® Mnr n+k
gen) = ¥ (—1p LD
k=0 :
Thus
2 CLm | gty 2 § SMmE | ks, .
T-n(g(x)) = IZ,O (—l)kT; (—1) BTN T ¥
o gﬂ go (—1)r+ T l+ - (LM | gty e | grtktsy gmn—k—i

|
=0 1D

— Z (—1)Z Z (n —}l_k)' <Ln xn+k><Mn+k [ xn+z‘> x—n—i.

607/27/2-3
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By Lemma 1, the last member simplifies to

y, (—y SR

=0

—n—%
’

which is the associated factor sequence for the delta functional M o L.
We may carry the analogy a step further with

THEOREM 19. If f_.(x) is the (f(D), g(D))-factor sequence and if g_,(x)
is the (h(D), k(D))-factor sequence, then the umbral composition g_,(f(x)) is the
factor sequence with pair

(f(D) H(g(D)), k(g(D)))-

Proof. Suppose g(D) has associated sequence p,(x) and associated factor
sequence /_,(x), and suppose k(D) has associated sequence ¢,(x) and associated
factor sequence k_,(x). Then if we let T' = f(D) and S = h(D),

£l = SEA(EC) = 3 () 1 S hnce)

- ki (7)< 1 Sau)> Bnca(s)-

Defining the umbral operator a: " — p,(x), then («1)*4 = g(4) and so
the above equals

Ty (—k") Ao t)* 67(S) | gu(p(*))) k_n_i(B(x))

— Ta((oz”l)* o'_l(S)) k_n(h(x))
= f(D) k(g(D)) ku(h(x)).

The result follows.
We can now give a solution to the connection constants problem for factor

sequences.

COROLLARY 1. Suppose f_,(x) is the ( f(D), g(D))-factor sequence and g_,(x)
is the (k(D), k(D))-factor sequence, and suppose

o2]
g—n(x) = z c-—n.kf—k(x)
k=0
for constants c_, . Then the sequence r_,(x) = 3x_q €_n 15" is a factor sequence

for the pair e (D))
g* i
(f(g—l(D)) k(g (D)))
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COROLLARY 2. Suppose f_,(x) is the associated factor sequence for f(D)
and g_,(x) is the associated factor sequence for g(D), and suppose

M@:iMMW%

Jor constants c_y ;. Then the sequence r_,(x) = Y n_o¢_n 3" is the associated
Sactor sequence for g( f~(D)).

11. ApprLicaTiONS TO FORMAL POWER SERIES

Given a formal power series

=% 4,

we can define a linear functional L in P* by (L |*> = a,. We call L the
generating functional of the sequence a,, . The series f(¢) is the indicator of the
linear functional L and L = f(A4).

When a, = 0 and 4, # 0 we call f(t) a delta series. We have seen that the
composition f(g(t)) is well defined when the constant coeficient of g(t) vanishes,
in particular when g(¢) is a delta series, and that

fley = Y SEI )

If f(2) is the indicator of the delta functional L, we have seen (Corollary 1
to Theorem 6) that

That is, the reciprocal series f~(t) is the indicator of L, the reciprocal functional
toL.

If f(2) and g(t) are the indicators of the delta functionals I, and M, then
Theorem 6 tells us that f(g(t)) is the indicator of the delta functional flg(A) =
M o L, and (%) becomes

o . %
flowy = ¥ HLEl g (+4)
k=0 :

The problem of determining the composition of formal power series is thus
equivalent to the problem of determining the composition of delta functionals.
It turns out that the latter can often be explicitly computed by the present

methods, as we shall see.



