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1. INrnopucrroN

The algebra I of polynomials in a single variable x provides a simple
setting in which to do the "polynomial" calculus. Besides its being an
algebra, one of the nicest features of I is that it is closed under both
differentiation and antidifferentiation. That is to say, the derivative of a
polynomial is another polynomial, and the antiderivative of a polynomial
is another polynomial (provided we ignore the arbitrary constant).

Furthermore, within the algebra 9, we have the well-known binomial
formula

( x + a 7 ' : n e Z ,  n 2 0 .

This formula may have been known as early as about 1100 ,ro, in the
works of Omar Khayyam. (Euclid knew the formula fog n:2 around
300 nc). To be sure, the formula, as we know it today, was stated by Pascal
in his Traiti du Triangle Arithmdtique in 1665.

But now suppose we wish to include the negative powers of x in our
setting. One possibility is to combine the positive and negative powers
of x, by working in the algebra ,il of Laurent series of the form

o!-*oo*o
The algebra ,4 is certainly closed under differentiation, and there is even
a binomial formula for negatiue integral powers,

( x + a 7 " : n e Z ,  n < 0 ,
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due to Newton, which converges for |xl> lal. (The binomial formula also
holds for noninteger values of z, but we restrict attention to integer values
in this paper.)

The algebra il does suffer from one drawback, however. It is not closed
under antidifferentiation. For there is no Laurent series /(x) with the
property that Df(x):x-1. To correct this problem, we must introduce the
logarithm log x. As we will see, doing so produces some rather interesting
consequences. For it leads us to introduce some previously unstudied
functions, which Loeb and Rota have called the harmonic logarithms' We
also obtain a generalization of the binomial coefftcients, and the binomial
formulas (1) and (2), which holds for allintegers n. This generalization is
called the logarithmic binomial formula, and has the form

).f;'(x + a):

where n is any integer, I is any positive integer, and the functions lli'6)

are the harmonic logarithms. When l:0, formula (3) reduces to the
traditional binomial formula (1), and when t:l and n<0, formula (3)

becomes formula (2). However, for l: 1 and n20, or for I > L, we get new
formulas. The coeflicients

are generalizations of the binomial coeflicients ([), and are defined for all
integers n and k. Loeb and Rota refer to these as the Romqn coefficients'

The first thorough study of the harmonic logarithms was made by Loeb
and Rota [3 ]. Our goal here is to report on some of the more basic aspects
of this study.

Before beginning, let us set some notation. The symbol D is used for the
derivative with respect to the independent variable. Also, if P is a logical
relation that is either true or false, we use the notation (P), due to lverson,
to equal 0 if P is false and 1 if P is true. For example,

l x l  : x ' ( -  1 ; t " o l .

2. THr Henrraouc Locmlrnnrs

We begin by letting Z be the set of all finite linear combinations, with
real coefficients, of terms of the form xt(log x)/, where i is any integer, and

7 is any nonnegative integer. That is, Z is the real vector space with basis

{ x'(log x)i I i, j e Z, i > 0\ . Under ordinary multiplication,

x '( log x)/ 'x ' ( log x) '  :  x '*  "( log x) '* ' ,

(3 )
i.L;l 

Af;\-ola.xk'

L;]
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Z becomes an algebra over the real numbers. Furthermore, the formula

Dxt( logx) i : ix i -  t ( logx)/+7x'- t( log"; ;- t  (4)

shows that Z is closed under differentiation. and the formulas

145

D - l x ' ( l o g  * ) t : ; l  ; x t * r ( l o g  * ) i  -  . i ,  ;  D - r x i ( l o g x ) i - ' ,
t f l  i + l

D-  |  x . ' ( log  x ) /  :  +  ( log  x ; r *  r'  j + r '

can be used to give an inductive proof showing that Z is
antidifferentiation. In fact, we can characterize Z as follows.

i *  - r

(5)

closed under

Pnoposnrox 2.1. The algebra L is the smallest algebra that contains
both x and x-1, and is closed under dffirentiation and antidffirentiation.

Formulas (4) and (5) indicate that, while the basis {x'(log x)r} may be
suitable for studying the algebraic properties of L, it is not ideal for
studying the properties of Z that are related to the operators D and D-t.
To search for a more suitable basis for I, let us take another look at how
the derivative acts on powers of x. If we let

.  /nr,  \  (  x" for n)0,r,;'tx): 
t0 for n < 0

then the derivative behaves as follows.

Dlto)@) = n)'f! r(x),

for all integers n. Thinking of the functions ,ilo)(r) as a doubly infinite
sequence, as shown in Fig. 1, we see that applying the derivative operator
D has the ellect of shifting one position to the left, and multiplying by a
constant.

Let us introduce the notation

f o r  n * 0
for  n :0 .

...{3)(.) r13)G) )(p(*) .r[0)1x; r[0)1x; rl0)1x; r[0)1x; ...

0 0 0 1 x x 2 x 3

Frcunr I

(n
t _n  t :  

[ t
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Then the functions ,t!0)(x) are uniquely defined by the following properties:

(1) , i [o)(x):  I

(2) Alo\(r) has no constant term for n t 0

(3) Dlro)(x): [nl ,1!01,(x).

Note that the antiderivative behaves nicely on the functions 1!|(r), except
when applieO to,igl(x). With the understanding that D-t produces no

arbitrary constant terms, we can write

( t

D-lAf,ot1x1: l;i 
L'fl'(ol for n* -r

[0 for n:  -1.

Following these guidelines, we can introduce a second row of functions
),!,t,(*) into Fig. 1, by starting with ,i$)("):logx, and using conditions
similar to conditions (1F(3). In particular, the conditions

(4) ,1$)(") :  log x

(5) Alt)(x) has no constant term

(6) il"ft(u") :Snl )"f;!,(x)

uniquely define a doubly infinite sequence of functions ).f\(r), as shown in

Fig.2.
This figure makes it rather easy to guess the general form of the

functions 1!]\(*).

PnopostrloN 2.2. The functions ,lf;)(x), uniquely defined by conditions
(4)-(6) aboue, are giuen by

a,- ,, ... .ri!)1*; .lJ!)1xy r(l)G) .r6o)G) r{o)G) rt0)1x; r[0)1x;

0 0 0 1 * * 2 x 3

n,. e, ... rjl)1*; r(;)(*) {l)t'l .rf )t.l r{1)1x; rf)1*; rf)t*)

x-3  x -2  x - l  logx  x ( logx-1)  x2( logx-1- | )  '3 ( togx-1- | - | ) " '

Ftcuru 2

1y(,\: {;:,", 
,_ h.) 

fr,, :arr,
w h e r e  h n : l * t l 2 + l l 3 +  " ' * l l n f o r  n > 0  a n d  h o : Q '
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Proof. Conditions 4 and 5 are clearly satisfied. As for condition 6, for
n<0, we have

Dx, : nx,- r :Lnf x,- t

For n> 0, we have

Finally, for n:0, we have

D( log  x )  =  x - l  :  LOl  x - t .  I

Note that the behavior of D-r on the functions ),lt)(x) is even nicer than
it is on the functions .i!o)(x), for assuming no arbitrary constant, we have

I
D- | ilttlxl: 

Lri ,I rll ,(*).

The vector space formed by using the functions ,1.!011x; and ,lf )(x) as a
basis is closed under differentiation and antidifferentiation, but it is not an
algebra. (The functions (logx)', for t>1, are not in this vector space, for
instance.) This prompts us to enlarge our class of functions as follows.

DnnNrnou. For all integers n and nonnegative integers t, we define the
harmonic logarithms )'f'(r\ of order t and degree r as the unique functions
satisfying the following properties:

(1 )  l t t@) :  ( log  x ) '

(2) )"li'Q) has no constant term, except that l.[or(x;: 1

(3) D). f  ' (x): ln l  ) , ! ' - , (x).

This definition allows us (at least in theory) to construct the harmonic
logarithms by starting each "row" (that is, the harmonic logarithms of a
fixed order) at 1{\(x): (log x)'. Then we dilferentiate to get ,l'f)(x) for
n < 0, and antidifferentiate to get A!)(x) for n > 0. In fact, with the usual
understanding about D-r, we can write

l i )@l:an.,D-n( logx) '

Dx"(log x - h,) : t4xn - 1(log x - h,) + x" - |

: n x n - ' ( b g r - l r , + 1 )
\ n )

: n x n -  1 ( l o g x  - h , _ r )

: ln lx , -  t  ( logx  -h ,_ r ) .

(6)
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where the an,t ate constants. In order to determine these constants, we hrst

observe that according to Property (1) of the definition,

( log x) ' : , t f ) (x) :  ao.,( log x) '

and so eo,,:1. Property (3) tells us that

Ln1a, -  t . ,D-@- 
t )1 log  x ) '  : ln l  ) ' f \ -  r (x ) :  D19(x) :  a , . ,D- ( ' -  1 ) ( log  x ) '

and so

ar , , :Ln1 an-  r , t .

Thus. for n ) 0, we have

a n , t : n e n - r , , : t l ( t l -  l )  a n - r , , :  i  "  :  n ( n -  l )  " ' ( 1 )  a s , t : n l ,

and for n <0.

L r + l l L n + 2 1 " ' L r + ( - n ) l
1

-  A n + l , t  -  
q n + 2 , t  

:  . .  r  :a" . , :Q+ i :  
Ln+r l ln+11
1

L"  +  r1L"  +  2 l  . . .  LOl  
-  

@ + r ) (n  +  2 ) " '  (  -  1 )

( - 1 ; - " * '

( - 1 ) ( - 2 ) . . . ( - ( - n -

This leads us to define, for all

1 ) ) :  ( - n -  D !

integers n,

( " ,  for  n) -O

L n l ! : j ( _ t ) - , - ,  f o r  n < 0 .
[ ( - n - l ) !

Loeb and Rota have called [n]! the Roman factorial. The notation [n l!
was suggested by Donald Knuth. Thus, we haYe an,,: l-n-l!, and Eq' (6)

gives us the following proposition.

Pnoposlrtou 2.3. The harmonic logarithms haue the form

11,(r \ :  [nl !  D-"( log x) ' .

Proposition 2.3 can be used to derive an explicit formula for the

harmonic logarithms. Since this formula is a bit involved, however, we

postpone it until later. First, we want to study the numbers [n l! and derive

ihe logarithmic binomial formula. We should mention now, however, that

the harmonic logarithms 1!i\@) form a basis for the algebra Z'
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3. Tnr Nuunnns l_nl!

Some values of fnl! are given in the following table:

n  - 6  - 5  - 4  - 3  * 2  - 1 0  1  2 3  4  5

l t l t
Ln l !  - t , ,o  

u  
-E  

,  
- t  I  I  1  2  6  24  r2o

It is well known thatn!:f(n+ 1), for n)0, where f(z)is the Gamma
function. The numbers Lnl! can also be expressed in terms of the Gamma
function.

PnoposnoN 3.1. For all integers n,

( r@+r) . fo,  n20
L'l! : 1 R", f(zl for n <0.

I  z : n + 1

Proof. The case n20 is well-known, and we use it to prove the case
n<0. Since

rQ) rQ - z): J-
stn ftz

we have, for n < 0,

n

, 5,.:, .l-(r ) :, In,(z - n - l ) l(zl :, ln,(z - n - tl frl ri" ",
T t  , .  z - n - l  n  , .  I

r . _ d , : n ,  " i t  *  
: ( - n - 1 ) ! , i f l ,  

" " o t -

:  l - t ) ' i l , : fn r ! .  r( - n - , 1 '

The next proposition shows that the numbers Lnl! do behave like the
ordinary factorials.

Pr.oposrrroN 3.2. For all integers n,

(a) Lnl ! : ln l ln-t l l

I  n l t
( b )  ; + : l n l l n - 1 1 . ' . L n - k + r f  f o r  k > 0 .

t n - K t !
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Proof. For (a), if n>0, then [nl! :nl, and the result is well-known.
F o r  n : 0 ,  w e  h a v e  l 0 l [ 0 - 1 1 ! : 1 . 1 : 1 : L 0 ] ! .  F i n a l l y ,  i f  n < 0 ,  t h e n
n- l<0 .  and so

( -1 ) - '  - 1  ( -1 ) ' - '  - l t  r t t  : l = t  r f ' ,L n  -  1 l ! :  ( _ r ) , ,  
:  

i  v n _ r =  n -  L r  l -

from which the result follows. Part (b) is proved by induction using
part (a). I

The proof of the following result is a straightforward application of the

definition of [nl!.

Pnoposrtou 3.3. For all integers n,

( a )  L n l ! L  - n f l :  ( - 1 ) " + ( ' > o )  L n l

( b )  L n l ! L  - n - l f l -  ( - 1 ) u  + ( z < o ) '

Proposition 3.2 can be used to prove the following result about the

harmonic logarithms.

PnoposnoN 3.4. For all integers n and nonnegatiue integers k,

I  n l !
ok i'It @) : #i.r 

llt- o@\

4. THn ConrrIcIrNrs ffl

From the delinition of [nl!, it is a natural step to make the following

definition. For all integers r and k, we let

l  r l  Lnl !
Lr l :

Loeb and Rota have called the numbers L?l the Roman coefJicients.

The notation L?l was also suggested by Knuth, and is read "Roman n

choose k." Here are some special values of these coefftcients:

l ' l : l n l : ,  l ' l : l  n f
Lo  l : 1 ,  l : t '  L t  l : L r - l  l : Ln  r '

l ' l = l  n  l =
L - t  l - l n  + l  I  l r + 1 1 '

l 0 l  ( - l ) k + ( k > o )

Lr l: L/.1
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The next proposition shows that these coefficients really do generalize the
binomial coeffrcients.

PnoposnloN 4.1. Wheneuer n2k20, or k20>n, the Roman cod
ficients agree with the ordinary binomial cofficients, that is,

l  r l  /n \
Lr l:  \r/

Proof. When n > k>-0, we have [n l! : n!, lkl! - lst., and ln - kll:
(n - k)1, in which case the result follows directly from the definition. For
k>O>n,  we have

l n l - - L , T t  - 1 , - - . , , -
Lk I  Lklfr : /cl  

: , . ln1Ln- 11"'Ln-k+ rf

1  ,  . ,  / n \: f i . ( n ) (n -  1 ) " '  (n -k *  1 ) :  ( ; /  I

As the next proposition shows, several of the algebraic properties of
the Roman coellicients are generalizations of properties of the ordinary
binomial coelficients.

PnoposntoN 4.2. (a) For all integers n, k, and r,

l ' - l : l  n  I
L k  I  l n - k l

(b) For all integers n, k, and r,

L;IL:]:L:]L;_;I
(c) (Pascal's formula). For any two distinct, nonzero integers n and

k, we haue

l r l _ l n - 1 1 ,  l n - 1 - |
L t l : L  / .  l * L r - t l

Proof. Parts (a) and (b) are direct consequences of the definition. As
for part (c), the conditions on n and k are equivalent to the statements
Lnl:n, Lk1:k, and ln-k1:n-k. Hence, using Proposition 3.2, we
have
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I  n- l1 l
:--:-::-:------- -i-L'; 'l . L;: il : [ n  *  1 l !

lkltln- 1 -kl! Lk* |l!ln- kl!

[ n  -  1 l ! 1 1 \- + -  |
tkf  ln-k1lkLk-  1 l !  Ln- r  -  k l !  \L f t l  

'  
Ln-k1

[ n  -  l l ! Lnl
Lk - 1l! Ln * L - kl! lklln - kl

:  .  =.1 ' l '  ,  =,  : l :1 I
Lkl!  Lr -  k l !  L^ |

Now let us consider some results that do not have analogs
ordinary binomial coefficients.

Pnoposnlox 4.3. For all integers n and k, we haue

k + ( n > k )

for the

I  n f l  k1 ( -1) '(a '  
L t lL ,  l :  g , - t1

L -;l : ( - 1)n*o*('>o)+'-"' Lf - ll
(Knuth' s Rotation I Reflection Law)

( - 1 )o*,-", Lo-jrl : ( - 1)'�*,"", L/rl

(b)

(c)

Proof. To prove part

L;IL;]:
(a), we use part (a) of Proposition 3.3,

Ln l!  Lkl!
Lkl!Ln -klt lnl l lk-nl l

1  (  - l ) n - k + ( n > k )

l n -k l l l k -n l t  Ln-k f

To prove part (b), we use part (b) of Proposition 3.3,

l - n f  L - n f l  ( - l ) ' + ( n > o )  L / s - 1 1 !  1

L-r l :  L-ntL1r-4: Ln-n GTFGb;t1r_�r1

/  1 \ n ),  F & + ( r > o ) + t t t o l  L k - 1 - l !
\  - /  

[n  -  1 l !  l k -n l l

:  (  -  1  ) ' + & +  
( u  > o ) + t u ' o l  I  

k  -  1 - 1 .

L r -  |  l .

I
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As for part (c), we replace -kby k-lin part (b), to get

l , - ' , 1 :  ( - l ) z + / < - 1  1 1 a 1 6 1 a 1 k - r  < o )  |  
- k , 1 .

L k - l  |  
'  

L n  - t  l '

Using the fact that (-1)- t+(k-1<0):(-1)(&>0),  and rearranging, we get
the desired result. I

5. Tnr Loclnrrnulc BrNolrt,lr Fonuurl

Now let us turn to the logarithmic binomial formula. The next proposi-
tion can be proved by induction using formulas (4) and (5).

PnoposntoN 5.1. Each harmonic logarithm )rf)(x) is a finite linear
combinqtion of terms of the form xi(logx)i, where i is any integer and j is
hny nonnegatiue integer.

In view of Proposition 5.1, for any positive real number a, we can
expand the function ),f(x+a) in a Taylor series that is valid for lxl<a,
as follows

lf (x +or : j. pup:"* : 
olo li,l ̂ r,_ rr,, .r

PnoposnloN 5.2 (Logarithmic Binomial Theorem). For all integers n,

),lt(x+o): i li-]^,:,-rrl* (7)
f t : o  L ^  |

ualidfor lxl<a.

Let us first look at the case r:0. Since )"lolo1a):sn-k for n>k, and
llo)o@):0 for n<k, the sum on the right hand side of (7) is actually a
finite one. Furthermore, since L?l:(?) when n>k>0, formula (7) is just
the classical binomial formula (1).

Next, consider the case ,: 1 and n < 0. Since

),1\(x):  { ' . ( tot  
x -  h ')  for n} 'o '

' 
lx" for n <0,

Eq. (7) becomes, for r < 0,

(x t a),: 
_I, L;l 

on-k*k.
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Interchanging the roles of x and a, and noting that L?l: ([) when
k>O> n, we get the classical binomial formula (2). (Proposition 5.2 tells us
only that this is valid for x > a, ralher than lxl > a.) Thus, we see that the
logarithmic binomial formula is indeed a generalization of the classical
binomial formulas (1) and (2).

When n > 0, we may extend the definition of the harmonic logarithms of
order 1 by taking

,tf )(0) :,llt* ,tf )1x;: g.

When t:1 and n)-0,the piecewise definition of ,lf;r(x) suggests that we
split the sum on the right side of (7), to get

).? (x + o, : i,li1 ̂ f, rr'r,o * o I *,1i1" 
- r *

= i. (;) )t)o@) xk + a'-:i., L;l(r-
valid for lxlal<1, a>0. This form is convenient for determining
convergence on the boundary.

Lnuue 5.3. Let a>0. Consider the series

S l ' l i l \ -
o:X*,Lr l \" /  '

(1) For n>0, this series conuerges for all lxl (4.

(21 For n:0, this series conuergesfor all lxl (4, except x: -a.

Proof. For k > n20, we have

I r l  L n l !  n t  ( k - n - l ) t '  t  1 \ k - n - l
I  r :  --- : --- : - : - t --------r

Lk |  [ /< l !  [n  -  k l !  k !  (  -  11^- ' -  '

Therefore, if n > 0, and l.xl ( a, we have

k ( k - r ) . . . ( k - n ) '

l l  n l lx \ t  I  n l  n l

lL* l l ; /  |  <r.1r.-  ry - .  1t- ,y " t1o-,

and so the series converges. If n:0, the terms of the series have the form

, - D o r - ' ( : ) r

nl.
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and it is well known that this logarithmic series converges for lxlal{I,
except at xf a: -1, or x: -e. (See, for example, 12, p.2l3l.) I

Abel's limit theorem 12, p.l77l now allows us to deduce the following
proposition.

PnopostrroN 5.4. The logarithmic binomial formula of order 1

)", t1x+o): i l !_]r. , ; ' . r1oy*r,  (8)'  
EoLk I

with a>0, is ualid.

(1) For lx l<a, when n<0,
(2) For lxl ( a, x * -a, when n:0,
(3) For lx l{a,  when n>0, where,t f ; r lO;:6.

Since

For n > 0, this is

(x * 1 )" [log(x + 1 ) - 0,, : 
L(ir), 

- o, - r, "* * 
* ;-, L;-l 

"-

which is valid for lxl( 1, where the left hand side is 0 for x: -1.
Rearranging terms, we get the following expansion.

PnoposrroN 5.5. For all integers n>0,

(x + t )' log(x * t,: j. (i) *^- h^-*t"- * 
o;., L;l 

'-

for lxl{l, where the left side is equal to 0for x: -1.

Setting x: -l in this formula gives the following beautiful formula.

, l f r ) 1 ) : [ - h ,  
f o r  n ] - 0

I for il 10,

taking a= | in (8) gives

).1,)(x+1): i  l i l ryrr;r -r.
rZoLk | 

"
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Conorr,cRv 5.6. For all integers n>0,

i  r - r r - l 1 l - ( - l ) " * ' .
* Z o  L e l  n

Proof. Setting x: -l in Proposition 5.5, we obtain

i  l l l , - 1 )o : - i  ( i )  ( h^ -h . -oX - r )o
u:',*t Lk | 

'  
*:.o \rc,/

- -hn-t, (;) ( - r)o +J. (;) (-t)o h^- o

:o*( -1)"  i  ( : )  r - r ) -  i .  1'  
*Z' \k/ i l t  t

: ( - 1 ) "  i  1 i  f T ) ( - l ) o'  
,7t i E'\k/

: ( - 1 ) ' i  1 ( - 1 ) ' f ' - l \'  ' '  
, ? r i '  

- ' \ i - t /

_( -1 ) ' i  ( 1 ) r_ , r ,
n  , ? t \ i  /  

'

_ ( - 1 ) ' � * t .
n

Since ! [ :o [X l ( -1 )u : I? :o (?X- l )o :0 ,  the  resu l t  fo l lows.  I

6. AN Expuclt FoRuurA FoR rI{E HenuoNtc Loclnnuus

We now turn to the matter of finding an explicit expression for the
harmonic logarithms. Although these functions are ideal with regard to
differentiation and antidifferentiation, their expression in terms of powers
of x and logx is not so simple. (Although it is elegant.)

With the benefit of hindsight, we set

. f l i 'G) :  r"  2 (  -  I  ) i  ( t1,  cf \( log x) '  - i ,

j : o

where  ( t ) i : t ( t - l ) " ' ( / - i+1) ,  ( / )o :1 ,  and.  c f i )  a te  undetermined
constants. Then we determine the constants c!/) so that the functions

.f!r(*\ satisfy the definition of the harmonic logarithms. After some
straightforward computations, we are led to the following proposition.

-_l
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PnoposmloN 6.1. The harmonic logarithms ),f;){x) are
formula

fr', :7', and (2)

Ll)(x): a" ( - 1 )' (t), cf)(log x)' - i,

where (t)t : t(t - l) ' ' '  (t - j + 1 ), (t)o : l, and the constants cf) are uniquely
determined by the initial conditions

(e)
t

t
L

r57

giuen by the

for  i :g
.fo, j +O

"5": 
{;

( 1 )  ' * ' : { ;

and the recurrence relation (for j>0)

(3 ) nclit : cl - ') + lnl cf! y

The numbers c!,), defined for all integers n and all nonnegative integers
7 by conditions (11(3), are known as the harmonic numbers. As we will see,
these numbers have some rather fascinating properties. Figure 3 shows
some values of the harmonic numbers.

Note that condition (l) of Proposition6.l gives us the Oth row of the
matrix in Fig.3, and condition (2) gives us the Oth column. Then we can
use condition (3) to fill in the remaining portion of the matrix. For the
right portion, we use condition (3) in its given form. (See Fig.4a.) For the
left portion, we use condition (3) in the form fnl cf!r:ncu)-s!l*1). (See
Fig. ab.)

Before discussing the properties of the harmonic numbers, we should
settle the matter of showing that the harmonic logarithms form a basis for

j=o --> . .  0  0  0  0  0  0
. . .  - r  - t  - l  - l  - l  - l

-s -?8 -? -+ -r 0
- f -8 :  - r  - l  o  o
-l i- t  -* o o o

' . ' - * ,  -h  0 o o o
" ' - #  o  o  o  o  o

n=0
Y
I  1  1  I  I  I  . . .
n r 3 l l ?5 l l2 ...

2  6  t z $

0  1  +  *  *  *  " '
n  1  E  *  r  t  . . '

8

0 1 f i * * * . . .
0 1 S * * * " .
0  l E  *  *  * . . '

-,-.....J-#

Columns sum to n Columns approach n

FIc. 3. Values of the harmonic numbers cli).
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Lnr.i,], --

(u)

^(j_ I )

/ '

Lnt.irlr <- n.1i)

(b)

.(j- l)- n

Iv
n c(j)n

Frcuru 4

the algebra t. If we let P,., be the sum on the right side of formula (9),

then we have

A!)(*)  :  xn'  Pn.t :  16' '  1sto)( leg x) '  - lcf ; )( log n) ' -  t  + " ' ) '

Now, according to condition (1) of Proposition6.l, c!|:l*0 fot n20,
and so, in this case, Pn,, has degree t in logx. On the other hand, clo):O
for n<0. But it is not hard to see from condition (3) in Proposition6.l
that, for r<0, we have cfl): -l+0. Hence, for n<0, Pn,,has degree
t - 1 .

In either case, for any given n, the function (log x)' can be written as a
frnite linear combination of the polynomials P,,r' Hence, for each n, the
basis functions xn(log x)' for L canbe written as a finite linear combination
of the harmonic logarithms ,trf)(x1, and so these functions span Z' Since the
harmonic logarithms are clearly linearly independent, they form a basis
for L.

Now let us return to a discussion of the properties of the harmonic
numbers. The following initial values of the harmonic numbers follow
easily from the definition.

PnoposlrtoN 6.2. For the harmonic numbers cf), we haue (see Fig.3)

(a) (Column 0)

(b) (Row 0)

f o r  n 2 O

for n <0

(c) (Column l)

c l \ : l

I  i ,  l l  f o r  i : gcd' : 
t0 .fo, j +O

"tt': {l
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(d) (Column -l\

c 9 \ :  - 6  , r

(e) (Lower left hand wedge)

cf) :0 for n <0 and j > -n.

Let us look more closely at the harmonic numbers c!l) of nonnegative
degree n ) 0. Note the beautiful pattern emerging in part (a).

PnoposntoN 6.3. For n>0, the harmonic numbers cf;) hatse the following
properties:

. .  1  1  I( a )  c L " : h n : t * t + 5 +  . + :

.  l / .  l \  r / ,  l  1 \  r /  I  l \c ' , i ' : t  * t ( t  * r ) * l 1 ' t *  , * l ) *  
. . . * ; \ t + 1 +  : )

l l -  t /  l \ tc l i ' : l * t L t * r ( . t * r , / l

1 t - .  t /  1 \  r /  I  l \ t* ;  L t* t  ( ,1  * ; )*  i  ( t * i * i , ) l  *
1 l - .  r /  1 \  r /  I  1 \* ;L t * t l t  * r ) * r l t  * r * z ) *  "

|  /  ' * . .  1) -1.+ - l t + t  n l J

In general, for j>0, ,1": i . l  c\ i- ' t .

(b) (Knuth)

(c) For each n>0, the sequence cf) forms a nondecreasing sequence in j,
which is strictly increasing for n>1. Furthermore, we haue, for each
n 2 o ,

lim clt : n.
J + @
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Hence, the limit
n:  1,  we have

STEVEN ROMAN

Proof. For part (a), since n>0 andT>0, repeated use of condition (3)
of Proposition 6.1, for dillerent values of the indices, gives

1
,,,!, : 

icf 
- tt + cf! ,

1  , ,  , ,  1: ; r , l - t )  + ; - c l _ , , t  +  c f ! ,

|  . .  . .  1  I  .: ; r , l - , t  + ; : j c f_ - l t  +  
, -c f : ) )  

+c( / ! . ,

:
|  . .  . .  I  I  1: ; "1 -D + ; t " ; : i '  + f1c l - j )  + '  + i  c t i - l t  +  c | fy ) .

But since cyi:0 forT>0, the conclusion follows. Part (b) can be proved
using Proposition 6.1, but we omit the details.

As for part (c), if n:0 or 1, the result follows easily from Proposi-
tion6.2. For each n>I, we proceed by induction on j. First, we have
cl l t :h,> 1:clo).  Assuming that cf  - t )>c9- ') ,  part  (a) gives

, y , : i I c v - ' t t  i  1  g \ i - . ) - � s , . � r )
,?t i ,?t i

and so c!/) is strictly increasing. Furthermore, for a fixed n, c!/) is bounded,
as can be seen by using part (b):

l c t ) l  (  i  f1 ) , - ,<  i  P \ : r " - t .
, ? r \ i  )  ' ? ' \ i  /

Sn:lim;-- c!/) must exist and be finite. For n:0 and

so:rt1 ,[r):r.LT 6;o: o

and

Sr :  l im c ! " ' l :  l im I  :1 .
, t + @  j - q

Let us assume that S,- r:n- 1. Rewriting condition (3) of Proposi-
tion 6.1, and taking limits, we have

lim (ncf) - cl - t ') : l i- lnl cf\r : Ln I S, - r : n(n - l).
j - q  j - @
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But since the appropriate limits exist, this can be written

lim ncp - lim cf - 1) : n(n - l)
j - e  j - q

or

nS, - ,Sn:n(n- l ) ,

from which it follows that ,S,: 12. I

To discuss the properties of the harmonic numbers cf) of negative degree
n < 0, we first recall some basic facts about the Stirling numbers s(n,7) of
the lirst kind. These numbers are defined, for all nonnegative integers n and
7, by the condition

x ( x - 1 ) ' . . ( x -  n + l ) : i  s ( n ,  j ) x i .
j : o

It can be shown that the Stirling numbers of the first kind are characterized
by the following conditions (see [1, p.2l4f):

s(n, 0) : s(0,,1):0, except that s(0, 0): 1

s (n ,  i ) : s (n  -  1 ,  / -  1 )  +  (n -  l )  s (n -  l ,  i ) .  
(10)

Now we can state the following proposition.

Pnoposrtox 6.4. For n<0, the harmonic numbers haoe the following
properties.

(a) c l ' )  :  - l

c l ' t :  - h - ^ - r :  - l - l -  - - t - .
z  - n - J

I  l /  1 \  1 /  I  l \c, : , :  - r -5 ( \ t  * ; ) -  o| \ t  * l  +1)-

|  / .  1  I  \
|  1 J - - - I  l -  |

- n - t  \ -  
' 2  - n - 2 ) '

In general, for j>0,

f  - r  1  I, 1 , : _ l  d , , +  I  ; " j , - " 1 ,
L  i : n + t t  I

where the sum on the right is 0 if n: -1.
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(b )

(c)

STEVEN ROMAN

tf): (-l)i lnl! s(-n, j), where s(n, j) are the Stirling numbers of the
first kind.

For eqch n <0, we haue cf\ :0 for j > -n, and so only a finite number
of the cf) are nonzero. Furthermore, we haue

L rY ' -  |  cu) :n .
j : o  - / : 0

(Contrast this with part (c) of Proposition 6.3.)

Proof. Part (a) can be proved by iteration, in a manner similar to
the proof of part (a) of Proposition 6.3. Part (b) can be proved using
Proposition 6.1, with the help of Eqs. (10). As for part (c), the hrst
statement follows from Proposition 6.2. For the second statement, we start
from the expression, valid for n < 0,

x ( x -  t ) . . . ( x  + n + D :  f  s ( - n ,  j )  r '  : ! , / , - t  ) i  c ] \ x j .
i=o Sn l l  i7o

Setting x: -I, we get

(  -  1 x -2)  " '  t ' t  :  * - i  " ! l ' '
L n  I . i : o

But by Proposition 3.3, for n < 0,

( -  1 X - 2 )  . . .  ( n ) l n l l :  ( - l ) '  L - n l !  L n l !  :  ( - 1 ) "  ( -  1 ) '  L n f : n ,

from which the result follows. I

7. CowcruoNc RrIra,c,ms

We have merely scratched the surface in the study of the algebra L and
its differential operators. For example, the harmonic logarithms A',i'U)
have a very special relationship with the derivative operator, spelled out in
the definition of these functions. Loeb and Rota show that there are other,
at least formal, functions that bear an analogous relationship to other
operators, such as the forward difference operator / defrned by /p(x):
p(x + l) - p(x).The functions associated with the operator / are denoted
by (")j;') and called the logarithmic lower factorial functions. In general, the
sequences pf(x) associated with various operators can be characterized
in several ways, for example as sequences of logarithmic binomial type,
satisfying the identity

p?(x  +  a ) : j. L;l pi?(a) p?-k@)
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We hope that the results of this paper justify speaking of the Roman
coellicients as a worthy generalization of the binomial coefficients. (This
is not to suggest that there may not be other worthy generalizations. )
It would be a further confirmation of this fact to discover a nice
combinatorial, or probabilistic, interpretation of the Roman coeffrcients,
which, as far as I know, has not yet been accomplished.
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