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THE FORMULA OF FAA DI BRUNO

STEVEN ROMAN
Department of Mathematics, University of South Florida, Tampa, FL 33620

1. Introduction. Almost every calculus student is familiar with the formula of Leibniz for the
nth derivative of the product of two functions

n

D'f(1)g(t)= 2 (i )P()D" *5(1).

k=

A much less well known formula is that of Faa di Bruno for the nth derivative of the

composition f(g(¢)) (see Theorem 2). It is the purpose of this paper to give a new proof of this
formula.

Several proofs of this formula have appeared in the literature. For example, in [1] there is a
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brief sketch of a proof using Taylor series. However, the omitted details are quite cumbersome.
In [2] there is a proof involving the Bell polynomials. In [3] there is a proof which relies on the
old-style umbral calculus developed in the mid 19th century [3], [4). However, this technique is
sometimes not mathematically rigorous and must resort to justification by other means. The
umbral calculus has taken great strides in the past decade [5]-[15] and is now a completely
rigorous theory. We shall use this theory to prove the formula of Faa di Bruno.

2. The Umbral Calculus. For our purposes the basic ideas of the umbral calculus may be
summarized as follows. Let P be the algebra of polynomials in a single variable x over a field C,
usually the real or complex numbers. Let P* be the dual vector space of linear functionals on P.
We use the notation {L|p(x))>, borrowed from Physics, for the action of the linear functional L
on the polynomial p(x). For each nonnegative integer k we define the linear functional A* by

(A¥|x"y=n'§,,

for all n > 0, where 8§, , is the Kronecker delta function (that is, 8, , =1 if n=k and 8, , =0 if
ns=k). Then A* is extended to any polynomial by linearity. Now any linear functional on P can
be expressed as a formal series in 4 *. By a formal series in A k we mean an expression of the

form
- -]

> aA*
k=0

where g, € C. A series of this form represents a well-defined linear functional if we set
. @0 o0
(2 aAd*|p(x)>= > alA*|p(x)).
k=0 k=0
This follows because {4 *|p(x)> =0 for all but a finite number of integers k and so the sum on
the right is a finite one. Now we can prove: .

THeOREM 1. If L is a linear functional on P then L can be written as

© k
L= ,?_"og:%—)‘k‘ 1)

Proof. We have seen that the sum above is a well-defined linear functional. Moreover,

00 L k o0 L xk
(3 D pramym § LD arjeny
k=0 : k=0 :

={L|x">
for all n > 0. Thus (1) holds and the proof is complete.

Theorem 1 implies that the vector space P* is isomorphic to the vector space F of all formal
power series in the variable 4. But F is also an algebra (in fact an integral domain). Therefore,
so is P*. To be explicit we make P* into an algebra by setting

VL EEY Lath
Then if L and M are given in the form of equation (1) we set

= $ EED (3 Ml

e k! j=o
- £ 21| 2 (Do ane

and so we have the formula

AMIxmy= S (KL M. @

k=0
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From this formula an induction argument easily establishes the formula for a multiple product
n
Lebfetym B (kg K .
ky+ - +k=n
We call the algebra P* the umbral algebra. Whenever we write L=£(A) we shall mean that f(A4)
is the series given in equation (1).

We need to establish only one simple fact about the umbral algebra before turning to Faa di
Bruno’s formula. If L=f(A), then by L’ or f'(4) we mean the linear functional obtained by
taking the formal derivative of the series f(A4) with respect to the variable 4. Thus for example
(A¥Y =kA*—t.

LemMA 1. If L=f(A) is a linear functional on P, then

(A p(x)) = f(A) | xp(x)>
for all polynomials p(x).
Proof. By linearity we need only establish this for (4)=A4 k and p(x)=x". But then we have
{(Aky]xm) =<kA* " x")
= kn!8,,,k_,
=(n+1)18,, 14
= < A kl x n+ l>
and the proof is complete.
'3. The Formula of Faa di Bruno. We are now ready for the main result.

TueOREM 2. If f(¢) and g(t) are functions for which all the necessary derivatives are defined,
then

ky K
DA =2 g (P son( Z2)" - (22Q),

where k=k,+ - - - + k, and the sum is over all ki,...,k, for which ky+2ky+ - - +nk,=n.

Proof. We shall follow the general lines of the proof given in [3] Let us write
h(t)=f(g(1)

h, = D]h(1)
& =D/g(?)
Jo= D ()| u=grr
Then
hy = D,h(£)= D, f(¥)|ym gy D:8(1) =11 815
and similarly

h2=f182+f1812
hy=f,8:+ 1,381 82+ 1 83-
It is easily established by induction that h, has the form

hy= élfkl,,k(gl,...,go e

where [, .(g;5...,8,) does not depend on any of the functions f. Now, since we wish only to
determine /, ,(g1,---,8,), We are free to choose f(¢) arbitrarily. Let us take f(1)=e* where a is an
arbitrary constant. Then

Jo= DH(u)|ym iy = 2" @
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and
h, = D¢, : )
Substituting (4) and (5) into (3) and multiplying by e =% gives
n
e~ ®ODre® D= gkl ,(8),...,8,)-
k=1

If we set B,(f)=e~®®D/e*®") then for n > 1 we have

B,(t)=e~®O D" 'ag,(1)e™®

n—-1
=ge~*®" 2 (n; 1 )gk+l(t)Drn—k_lem‘)
k=0

=anil(";])gk+1(1)3n-k—n(’) (6)

k=0
where we have used Leibniz’s formula for the second equality. Now we may think of ¢ as being
fixed; write B,(f)= B, and g,(f)=g, and define two linear functionals L and M on P by

(L{x")>=B8,
(M|x")=g,.
Notice that (L|1)=By=1, {(M|1>=g,=g and
L= Be 4
k=0 ™
-]
_ 8k
M= F,4".
k=0 ™

Equation (6) now becomes, by virtue of equation (2),

n—1
Lix®) = n—1 M|xk*? n—-1-k
(Llxmy=a 3 ("1 KMk CLxmte

n—1
=a 3 (" MR <L

k=0
=a({M'L|x"" ")
and so
L'|x* "Dy =al{M'L|x""").

Since this holds for all n > 1, we conclude that

L'=aM'L. 0
This formal differential equation is easily solved. The linear functional F(4)=e*™ % clearly
satisfies (7) and if G(A) also satisfies (7) then F(A4)/G(A) has derivative equal to zero and is
therefore a constant. Hence all solutions are of the form

L= ce™M-2)

where c is a constant. In order to determine ¢ we consider the initial condition

1= By=(L|1y =ce ™81y =c

and so
L= e®M—z0),

B,=<L|x")
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= (e ™=8|x")

= S B (M -gfxn
k=0 ™

= i % 2 (.11 )<M 8ol XD« - - (M — go| x4

k=0 K° 4 j=n

S% 3 ( § )g g
Pyt k!jl+"'+jk-" J1see-aJi JON k

1
wl

and so equating coefficients of a* in the two expressions for B, gives

(8- 8= k: Py (%) (.Iilk)

(&)

J-'>l
_n! k &i\k
_7c_!2(k,,...,k,,)( 1!)
where the last sum is over all k,,...,k, for which k;+--- +k,=k and k;+2k,+--- +nk,=n.
Finally,

ha(t)= éfkln,k(gl’-'ﬂgn)
- Saserte () (B)°
=2 k'f"( D" (%)

where k=k, + - - - +k, and the last sum is over all k,,..., k, for which kK, +2k, +--- +nk,=n.
This is the desired formula and the proof is complete.
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