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Preface

The purpose of this book is to provide an introduction to the  of category theory. It isbasic language
intended for the graduate student, advanced undergraduate student, non specialist mathematician or scientist
working in a need-to-know area. The treatment is abstract in nature, with examples drawn mainly from
abstract algebra.

Motivation

Category theory is a relatively young subject, founded in the mid 1940's, with the lofty goals of ,unification
clarification efficiency and  in mathematics.

Indeed, Saunders Mac Lane, one of the founding fathers of category theory (along with Samuel Eilenberg),
says in the first sentence of his book : “Category theory startsCategories for the Working Mathematician
with the observation that many properties of mathematical systems can be unified and simplified [clarified!]
by a presentation with diagrams of arrows.” Of course, unification and simplification are common themes
throughout mathematics.

To illustrate these concepts, consider the set  of nonzero real number under multiplication, the set‘‡

` ` Uœ Ð8ß 5Ñ 8 ‚ 5 of  matrices over the complex numbers under addition and the set  of bijections of
the integers under composition. Very few mathematicians would take the time to prove that inverses in each
of these sets are unique—They would simply note that each of these is an example of a  and prove ingroup
one quick line that the inverse of any “element” in a group is unique, to wit, if  and  are inverses for theα "

group element , then+

α α α " α " " "œ " œ Ð+ Ñ œ Ð +Ñ œ " œ

This at once  the role of uniqueness of inverses by showing that this property has clarifies nothing whatever
to do with real numbers, matrices or bijections. It has to do only with associativity and the identity property
itself. This also  the concept of uniqueness of inverses because it shows that uniqueness of inverses inunifies
each of these three cases is really a single concept. Finally, it makes life more  for mathematiciansefficient
because they can prove uniqueness of inverse for  examples of groups , as it were.all in one fell swoop

Now, this author knows from over 40 years of experience teaching mathematics that the clarifying, unifying,
economizing concept of a group is far too abstract for most lay persons (non mathematicians) as well as for
many undergraduate students of mathematics (and alas even some graduate students). However, at the same
time, the concept of a group is a most natural, hardly-abstract-at-all concept for most mathematicians and a
great many others, such as many physicists, for example.

Now, category theory attempts to do the same for  of mathematics (perhaps a bit of a hyperbole) as groupall
theory does for the cases described above. However, for various reasons, even a great many mathematicians
find category theory to be too abstract for general comprehension. Perhaps one reason for this is that
category theory is not introduced to students in any natural way (pardon the pun). To be more specific, a
natural way to introduce category theory is slowly, in small bites, in beginning graduate classes in algebra,
logic, topology, geometry and so on. For it would seem that plunging most students into a full-fledged
course in category theory designed to be as comprehensive as our common courses in algebra, logic,
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topology and so on is simply too much abstraction at one time for all but those who are ordained by the
gods to be among our most abstract thinkers. The motto for teaching category theory should be “easy does it
at first.”

Hence this book.

The Five Concepts of Category Theory

It can be said that there are five  concepts in category theory, namely,major

ì  Categories
ì  Functors
ì  Natural transformations
ì  Universality
ì  Adjoints

Some would argue that each of these concepts was “invented” or “discovered” in order to produce the next
concept in this list. For example, Saunders MacLane himself is reported to have said: “I did not invent
category theory to talk about functors. I invented it to talk about natural transformations.”

Whether this be true or not, many students of mathematics are finding that the language of category theory
is popping up in many of their classes in abstract algebra, lattice theory, number theory, differential
geometry, algebraic topology and more. Also, category theory has become an important topic of study for
many computer scientists and even for some mathematical physicists. Hopefully, this book will fill a need
for those who require an understanding of the  concepts of the subject. If the need or desire shouldbasic
arise, one can then turn to more lengthy and advanced treatments of the subject.

This author believes that one of the major stumbling blocks to gaining a basic understanding of category
theory lies in the  and the  that is most commonly used by authors of the subject, bothnotation terminology
of which can quickly overwhelm the uninitiated. Accordingly, in this book, both the terminology and the
notation are “relaxed” somewhat in an effort to let the reader focus more on the concepts than the language
and notation.

Coverage

The first chapter of the book introduces the definitions of category and functor and discusses diagrams,
duality, initial and terminal objects, special types of morphisms and some special types of categories,
particularly comma categories and hom-set categories. Chapter 2 is devoted to functors and natural
transformations, concluding with Yoneda's lemma.

Chapter 3 introduces the concept of universality and Chapter 4 continues the discussion by introducing
cones, limits and the most common categorical constructions: products, equalizers, pullbacks and
exponentials (and their duals). The chapter concludes with a theorem on the existence of limits. Chapter 5 is
devoted to adjoints and adjunctions.

Thanks

I would like to thank my students Phong Le, Sunil Chetty, Timothy Choi, Josh Chan, Tim Tran and Zachary
Faubion, who attended my lectures on a much expanded version of this book and offered many helpful
suggestions.
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Chapter 1
Categories

Foundations

Before giving the definition of a category, we must briefly (and somewhat informally) discuss a notion from
the foundations of mathematics. In category theory, one often wishes to speak of “the category of (all) sets”
or “the category of (all) groups.” However, it is well known that these descriptions cannot be made precise
within the context of sets alone.

In particular, not all “collections” that one can define informally though the use of the English language, or
even formally through the use of the language of set theory, can be considered sets without producing some
well-known logical paradoxes, such as the Russell paradox of 1901 (discovered by Zermelo a year earlier).
More specifically, if  is a well-formed formula of set theory, then the collection9ÐBÑ

\ œ Ö B ± ÐBÑ ×sets  is true9

cannot always be viewed as a set. For example, the family of all sets, or of all groups, cannot be considered
a set. Nonetheless, it is desirable to be able to apply some of the operations of sets, such as union and
cartesian product, to such families. One way to achieve this goal is through the notion of a . Every setclass
is a class and the classes that are not sets are called . Now we can safely speak of the  ofproper classes class
all sets, or the  of all groups. Classes have many of the properties of sets. However, while every set of aclass
set is an element of another set, no class can be an element of another class. We can now state that the
family  defined above is a class without apparent contradiction.\

Another way to avoid the problems posed by the logical paradoxes is to use the concept of a set  called ah

universe small sets. The elements of  are called . Some authors refer to the  of  as  and someh hsubsets sets
use the term . In order to carry out “ordinary mathematics” within the universe , it is assumed to beclasses h

closed under the basic operations of set theory, such as the taking of ordered pairs, power sets and unions.

These two approaches to the problem of avoiding the logical paradoxes result in essentially the same theory
and so we will generally use the language of sets and classes, rather than universes.

The Definition

We can now give the definition of a category.

Definition  A   consists of the following:categoryV
1   A class  whose elements are called the . It is customary to write  in) ( )Objects objectsObj Ð Ñ E −V V

place of .E − Ð ÑObj V

2   For each (not necessarily distinct) pair of objects , a set , called) ( )Morphisms EßF − ÐEßFÑV homV

the  for the pair . The elements of  are called ,  or hom-set morphisms maps arrowsÐEßFÑ ÐEßFÑhomV

from  to . If , we also writeE F 0 − ÐEßFÑhomV

0ÀE Ä F 0or EF
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The object  is called the  of  and the object  is called theE œ Ð0Ñ 0 F œ Ð0Ñdom codomdomain
codomain of .0

3  Distinct hom-sets are disjoint.)
4   For  and  there is a morphism ,) ( )Composition 0 − ÐEßFÑ 1 − ÐFßGÑ 1 ‰ 0 − ÐEßGÑhom hom homV V V

called the  of  with . Moreover, composition is associative:composition 1 0

0 ‰ Ð1 ‰ 2Ñ œ Ð0 ‰ 1Ñ ‰ 2

whenever the compositions are defined.
5   For each object  there is a morphism , called the) ( )Identity morphisms E " − ÐEßEÑ− V E homV

identity morphism for , with the property that if  thenE 0 − ÐEßFÑEF homV

" ‰ 0 œ 0 0 ‰ " œ 0F EF EF EF E EFand

The class of all morphisms of  is denoted by .V VMor Ð Ñ �

A variety of notations are used in the literature for hom-sets, including

ÐEßFÑß ÒEßFÓß ÐEßFÑ ÐEßFÑV and Mor

(We will drop the subscript  in  when no confusion will arise.)V homV

We should mention that not all authors require property 3) in the definition of a category. Also, some
authors permit the hom-sets to be classes. In this case, the categories for which the hom-classes are sets is
called a . Thus, all of our categories are locally small. A category  for which bothlocally small category V

the class  are sets is called a . Otherwise,  is called a Obj MorÐ ÑV  and the class Ð ÑV Vsmall category large
category.

Two arrows belonging to the same hom-set  are said to be . We use the phrase “  is ahomÐEßFÑ 0parallel
morphism  ” to mean that the domain of  is  and “  is a morphism  ” to mean that theleaving enteringE 0 E 0 F
codomain of  is .0 F

When we speak of a composition , it is with the tacit understanding that the morphisms are1 ‰ 0
compatible, that is, .dom codomÐ1Ñ œ Ð0Ñ

The concept of a category is . Here are some examples of categories. In most cases,very general
composition is the “obvious” one.

Example 1
The Category  of SetsSet
 Obj  is the class of all sets.
  is the set of all functions from  to .homÐEßFÑ E F

The Category  of MonoidsMon
 Obj  is the class of all monoids.
  is the set of all monoid homomorphisms from  to .homÐEßFÑ E F

The Category  of GroupsGrp
 Obj  is the class of all groups.
  is the set of all group homomorphisms from  to .homÐEßFÑ E F

The Category  of Abelian GroupsAbGrp
 Obj  is the class of all abelian groups.
  is the set of all group homomorphisms from  to .homÐEßFÑ E F

The Category  of -modules, where  is a ringModV V V
 Obj  is the class of all -modules.V
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  is the set of all -maps from  to .homÐEßFÑ V E F

The Category  of Vector Spaces over a Field VectJ J
 Obj  is the class of all vector spaces over .J
  is the set of all linear transformations from  to .homÐEßFÑ E F

The Category  of RingsRng
 Obj  is the class of all rings (with unit).
  is the set of all ring homomorphisms from  to .homÐEßFÑ E F

The Category  of Commutative Rings with identityCRng
 Obj  is the class of all commutative rings with identity.
  is the set of all ring homomorphisms from  to .homÐEßFÑ E F

The Category  of FieldsField
 Obj  is the class of all fields.
  is the set of all ring embeddings from  to .homÐEßFÑ E F

The Category  of Partially Ordered SetsPoset
 Obj  is the class of all partially ordered sets.
  is the set of all  functions from  to , that is, functions  satisfyinghomÐEßFÑ E F 0À T Ä Umonotone

: Ÿ ; Ê 0Ð:Ñ Ÿ 0Ð;Ñ

The Category  of relationsRel
  is the class of all sets.Obj
  is the set of all binary relations from  to , that is, subsets of the cartesian producthomÐEßFÑ E F

E ‚ F.

The Category  of Topological SpacesTop
 Obj  is the class of all topological spaces.
  is the set of all continuous functions from  to .homÐEßFÑ E F

The Category  of Manifolds with Smooth MapsSmoothMan
  is the class of all manifolds.Obj
  is the set of all smooth maps from  to . homÐEßFÑ E F �

Example 2 The class  of  categories does not form the class of objects of a category, since otherwise T Tall
would be an element of , but no class is a member of another class. On the other hand, the class  ofObj Ð ÑT f

all  categories does form the objects of another category, whose morphisms are the , to besmall functors
defined a bit later in the chapter. This does not present the same problem as the class of all categories
because  is not small and therefore not a member of .f f �

Here are some slightly more unusual categories.

Example 3 Let  be a field. The category  of matrices over  has objects equal to the set  ofJ JMatr J
�™

positive integers. For , the hom-set  is the set of all  matrices over ,7ß8 − Ð7ß 8Ñ 8 ‚7 J™� hom
composition being matrix multiplication. Why do we reverse the roles of  and ? Well, if7 8
Q − Ð7ß 8Ñ R − Ð8ß 5Ñ Q 8 ‚7 R 5 ‚ 8hom hom and , then  has size  and  has size  and so the product
RQ 5 ‚7 Ð7ß 5Ñ makes sense and has size , that is, it belongs to , as required. Incidentally, this is ahom
case in which the category is named after its morphisms, rather than its objects.�

Example 4 A single monoid  defines a category with a single object , where each element is aQ Q
morphism. We define the composition  to be the product . This example applies to other algebraic+ ‰ , +,
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structures, such as groups. All that is required is that there be an identity element and that the operation be
associative.�

Example 5 Let  be a partially ordered set. The objects of the category  are theÐT ß Ÿ Ñ ÐT ß Ÿ ÑPoset
elements of . Also,  is empty unless , in which case  contains a single element,T Ð+ß ,Ñ + Ÿ , Ð+ß ,Ñhom hom
denoted by . Note that the hom-sets specify the relation on . As to composition, there is really only+, Ÿ T
one choice: If  and  then it follows that  and so , which implies that+,À + Ä , ,-À , Ä - + Ÿ , Ÿ - + Ÿ -
hom homÐ+ß -Ñ Á g ,- ‰ +, œ +- Ð+ß +Ñ. Thus, we set . The hom-set  contains only the identity morphism for
the object .+

As a specific example, you may recall that each positive natural number  is defined to be the set of all8 − �

natural numbers that precede it:

8 œ Ö!ß "ßá ß 8 - "×

and the natural number  is defined to be the empty set. Thus, natural numbers are ordered by membership,!
that is,  if and only if  and so  is the set of all natural numbers  . Each natural7 . 8 7 − 8 8 8less than
number  defines a category whose objects are its elements and whose morphisms describe this order8
relation. The category  is sometimes denoted by bold face .8 8�

Example 6 A category for which there is  morphism between every pair of (not necessarilyat most one
distinct) objects is called a  or a . If  is a thin category, then we can usepreordered category thin category V

the  of a morphism to define a binary relation on the objects of , namely,  if there exists aexistence V E £ F
morphism from  to . It is clear that this relation is reflexive and transitive. Such relations are calledE F
preorders. (The term  is used in a different sense in combinatorics.)preorder

Conversely, any preordered class  is a category, where the objects are the elements of  and thereÐT ß £ Ñ T
is a morphism  from  to  if and only if  (and there are no other morphisms). Reflexivity0 E F E £ FEF

provides the identity morphisms and transitivity provides the composition.

More generally, if  is any category, then we can use the  of a morphism to define a preorder onV existence
the objects of , namely,  if there is at least one morphism from  to .V E £ F E F �

Example 7 Consider a deductive logic system, such as the propositional calculus. We can define two
different categories as follows. In both cases, the well-formed formulas (wffs) of the system are the objects
of the category. In one case, there is one morphism from the wff  to the wff  if and only if we can deduceα "

" α α " " α given . In the other case, we define a morphism from  to  to be a  of  from , thatspecific deduction
is, a specific ordered list of wffs starting with  and ending with  for which each wff in the list is either anα "

axiom of the system or is deducible from the previous wffs in the list using the rules of deduction of the
system.�

The Categorical Perspective

The notion of a category is extremely general. However, the definition is  what is needed to set theprecisely
correct stage for the following two key tenets of mathematics:

1) Morphisms (e.g. linear transformations, group homomorphisms, monotone maps) play an essentially
equal role alongside the mathematical structures that they morph (e.g. vector spaces, groups, partially
ordered sets).

2) Many mathematical notions are best described in terms of morphisms between structures rather than in
terms of the individual elements of these structures.

In order to implement the second tenet, one must grow accustomed to the idea of focusing on the
appropriate  between mathematical structures and not on the  of these structures. For example,maps elements
as we will see in due course, such important notions as a basis for a vector space, a direct product of vector
spaces, the field of fractions of an integral domain and the quotient of a group by a normal subgroup can be
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described using maps rather than elements. In fact, many of the most important properties of these notions
follow from their morphism-based descriptions.

Note also that one of the consequences of the second tenet is that important mathematical notions tend to be
defined , rather than uniquely.only up to isomorphism

An immediate example seems in order, even though it may take some time (and further reading) to place in
perspective.

Example 8 Let  and  be vector spaces over a field . The external direct product of  and  isZ [ J Z [
usually defined in elementary linear algebra books as the set of ordered pairs

Z ‚[ œ ÖÐ@ß AÑ ± @ − Z ßA − [×

with componentwise operations:

Ð@ß AÑ 4 Ð@ ß A Ñ œ Ð@ 4 @ ßA 4 A Ñw w w w

and

<Ð@ß AÑ œ Ð<@ß <AÑ

for . One then defines the < − J projection maps

3 3" #À Z ‚[ Ä Z À Z ‚[ Ä [and

by

3 3" #Ð@ß AÑ œ @ Ð@ß AÑ œ Aand

However, the importance of these projection maps is not always made clear, so let us do this now.

Figure 1

As shown in Figure 1, the ordered triple  has the following : GivenÐZ ‚[ß ß Ñ3 3Z [ universal property
any vector space  over  and any “projection-like” pair of linear transformations\ J

5 5" #À \ Ä Z À\ Ä [and

from  to  and , respectively, there is a  linear transformation  for which\ Z [ À\ Ä Z ‚[unique 7

3 7 5 3 7 5" " # #‰ œ ‰ œand

Indeed, these two equations uniquely determine  for any  because7ÐBÑ B − \

7 3 7 3 7 5 5ÐBÑ œ Ð Ð ÐBÑÑß Ð ÐBÑÑÑ œ Ð ÐBÑß ÐBÑÑ" # " #

It remains only to show that  is linear, which follows easily from the fact that  and  are linear.7 5 5" #

Now, the categorical perspective is that this universal property is the essence of the direct product, at least
up to isomorphism. In fact, it is not hard to show that if an ordered triple

ÐY ß À Y Ä Z ß À Y Ä [Ñ- -" #
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has the universal property described above, that is, if for any vector space  over  and any pair of linear\ J
transformations

5 5" #À \ Ä Z À\ Ä [and

there is a  linear transformation  for whichunique 7 À \ Ä Y

- 7 5 - 7 5" " # #‰ œ ‰ œand

then  and  are isomorphic as vector spaces. Indeed, in some more advanced treatments of linearY Z ‚[
algebra, the direct product of vector spaces is  as  triple that satisfies this universal property.defined any
Note that, using this definition, .the direct product is defined only up to isomorphism

If this example seems to be a bit overwhelming now, don't be discouraged. It can take a while to get
accustomed to the categorical way of thinking. It might help to redraw Figure 1 a few times without looking
at the book.�

Functors

If we are going to live by the two main tenets of category theory described above, we should immediately
discuss morphisms between categories! Structure-preserving maps between categories are called .functors
At this time, however, there is much to say about categories as individual entities, so we will briefly
describe functors now and return to them in detail in a later chapter.

The unabridged dictionary defines the term , from the New Latin  (past participle of : tofunctor functus fungi
perform) as “something that performs a function or operation.” The term  was apparently first usedfunctor
by the German philosopher Rudolf Carnap (1891–1970) to represent a special type of function sign. In
category theory, the term  was introduced by Samuel Eilenberg and Saunders Mac Lane in theirfunctor
paper  [8].Natural Isomorphisms in Group Theory

Since the structure of a category consists of  its objects and its morphisms, a functor should map objectsboth
to objects and morphisms to morphisms. This requires two different maps. Also, there are two versions of
functors:  and .covariant contravariant

Definition  Let  and  be categories. A   is a pair of functions as is customary, we useV W V Wfunctor J À Ê (
the same symbol  for both functions :J )
1  The  of the functor) object part

J À Ð Ñ Ä Ð ÑObj ObjV W

maps objects in  to objects in V W

2  The ) arrow part

J À Ð Ñ Ä Ð ÑMor MorV W

maps morphisms in  to morphisms in  as follows:V W

 a) For a ,covariant functor

J À ÐEßFÑ Ä ÐJEß JFÑhom homV W

for all , that is,  maps a morphism  in  to a morphism  in .EßF − J 0ÀE Ä F J0À JE Ä JFV V W

 b) For a ,contravariant functor

J À ÐEßFÑ Ä ÐJFß JEÑhom homV W

for all , that is,  maps a morphism  in  to a morphism  in .EßF − J 0ÀE Ä F J0À JF Ä JEV V W

( )Note the reversal of direction .
 We will refer to the restriction of  to  as a  of J ÐEßFÑ J ÞhomV local arrow part



Categories 7

3  Identity and composition are preserved, that is,)

J" œ "E JE

and for a covariant functor,

JÐ1 ‰ 0Ñ œ J1 ‰ J0

and for a contravariant functor,

JÐ1 ‰ 0Ñ œ J0 ‰ J1

whenever all compositions are defined.�

As is customary, we use the same symbol  for both the object part and the arrow part of a functor. We willJ
also use a double arrow notation for functors. Thus, the expression  implies that  and  areJ À ÊV W V W

categories and is read “  is a functor from  to .” (For readability sake in figures, we use a thick arrow toJ V W

denote functors.)

A functor  from  to itself is referred to as a  . A functor  is called a J À Ê J À ÊV V V V Vfunctor on set-Set
valued functor. We say that functors  with the same domain and the same codomain areJ ßKÀ ÊV W

parallel antiparallel and functors of the form  and  are .J À Ê KÀ ÊV W W V

The term  appears to have been first used in 1853 by James Joseph Sylvester (who was quite fondcovariant
of coining new terms) as follows: “Covariant, a function which stands in the same relation to the primitive
function from which it is derived as any of its linear transforms do to a similarly derived transform of its
primitive.” In plainer terms, an operation is covariant if it varies in a way that preserves some related
structure or operation. In the present context, a covariant functor preserves the direction of arrows and a
contravariant functor reverses the direction of arrows.

One way to view the concept of a functor is to think of a (covariant) functor  as a mapping of one-J À ÊV W

arrow diagrams in ,V

E FÒ
0

to one-arrow diagrams in ,W

JE JFÒ
J0

with the property that “identity loops” and “triangles” are preserved, as shown in Figure 2.

Figure 2

A similar statement holds for contravariant functors.

Composition of Functors

Functors can be composed in the “obvious” way. Specifically, if  and  are functors,J À Ê KÀ ÊV W W X

then  is defined byK ‰ J À ÊV X

ÐK ‰ JÑÐEÑ œ KÐJEÑ
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for  andE − V

ÐK ‰ JÑÐ0Ñ œ KÐJ0Ñ

for . We will often write the composition  as .0 − ÐEßFÑ K ‰ J KJhomV

Special Types of Functors

Definition  Let  be a functor.J À ÊV W

1)  is  if all of its the local arrow parts are surjective.J full
2)  is  if all of its local arrow parts are injective.J faithful
3)  is  (i.e., full and faithful) if all of its local arrow parts are bijective.J fully faithful
4)  is an  of  in  if it is fully faithful and the object part of  is injective.J Jembedding V W �

We should note that the term , as applied to functors, is defined differently by different authors.embedding
Some authors define an embedding simply as a full and faithful functor. Other authors define an embedding
to be a faithful functor whose object part is injective. We have adopted the strongest definition, since it
applies directly to the important Yoneda lemma (coming later in the book).

Note that a faithful functor  need not be an embedding, for it can send two morphisms fromJ À ÊV W

different hom sets to the same morphism in . For instance, if  and  then it mayW JE œ JE JF œ JFw w

happen that

J0 œ J1EF E Fw w

which does not violate the condition of faithfulness. Also, a full functor need not be surjective on .Mor Ð ÑV

A Couple of Examples

Here are a couple of examples of functors. We will give more examples in the next chapter.

Example 9 The   sends a set  to its power set  and sends each setpower set functorkÀ Ê E kÐEÑSet Set
function  to the induced function  that sends  to . (It is customary to use0ÀE Ä F 0À kÐEÑ Ä kÐFÑ \ 0\
the same notation for the function and its induced version.) It is easy to see that this defines a faithful but
not full covariant functor.

Similarly, the   sends a set  to its power set  and a setcontravariant power set functorJ À Ê E kÐEÑSet Set
function  to the induced  function  that sends  to . The0ÀE Ä F 0À kÐFÑ Ä kÐEÑ \ © F 0 \ © Einverse "

fact that  is contravariant follows from the well known fact thatJ

Ð0 ‰ 1Ñ œ 1 ‰ 0" " "
�

Example 10 The following situation is quite common. Let  be a category. Suppose that  is anotherV W

category with the property that every object in  is an object in  and every morphism  of  is aV W V0ÀE Ä F
morphism  of .0ÀE Ä F W

For instance, every object in  is also an object in : we simply ignore the group operation. Also, everyGrp Set
group homomorphism is a set function. Similarly, every ring can be thought of as an abelian group by
ignoring the ring multiplication and every ring map can be thought of as a group homomorphism.

We can then define a functor  by sending an object  to itself, thought of as an object in J À Ê E −V W V W

and a morphism  in  to itself, thought of as a morphism in .0ÀE Ä F V W

Functors such as these that “forget” some structure are called . In general, these functorsforgetful functors
are faithful but not full. For example, distinct group homomorphisms  are also distinct as0ß 1À E Ä F
functions, but not every set function between groups is a group homomorphism.

For any category  whose objects are sets, perhaps with additional structure and whose morphisms are setV

functions, also perhaps with additional structure, the “most forgetful” functor is the one that forgets all
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structure and thinks of an object simply as a set and a morphism simply as a set function. This functor is
called the   on .underlying-set functor YÀ ÊV VSet �

The Category of All Categories

As mentioned earlier, it is tempting to define the category of all categories, but this does not exist. For the
collection of all categories must surely be a proper class, being too large to be a set. If this collection
formed the objects of a category , then  would belong to itself, which is not allowed for a class. In fact,V V

even if  was a set, then  would violate the axiom of regularity, which implies that no set can be aV V V−
member of itself.

On the other hand, the category  of all  categories does exist. Its objects are the small categoriesSmCat small
and its morphisms are the covariant functors between categories. Of course,  is a  category andSmCat large
so does not belong to itself.

Concrete Categories

Despite the two main tenets of category theory described earlier, most common categories do have the
property that their objects are sets whose elements are “important” and whose morphisms are ordinary set
functions on these elements, usually with some additional structure (such as being group homomorphisms or
linear transformations). This leads to the following definition.

Definition  A category  is  if there is a faithful functor . Put more colloquially,   isV V Vconcrete J À Ê Set
concrete if the following hold:
1  Each object  of  can be thought of as a set  which is often  itself . Note that distinct objects) ( )E JE EV

may be thought of as the same set.
2  Each distinct morphism  in  can be thought of as a distinct set function ) 0ÀE Ä F J0À JE Ä JFV

(which is often  itself).0
3  The identity  morphism can be thought of as the identity set function  and the) " J"À JE Ä JEE

composition  in  can be thought of as the composition  of the corresponding set0 ‰ 1 J0 ‰ J1V

functions.�

Categories that are not concrete are called . Many concrete categories have the propertyabstract categories
that  is  and  is . This applies, for example, to most of the previously defined categories, such asJE E J0 0
Grp Rng Vect Poset Rel, ,  and . The category  is an example of a category that is not concrete.

In fact, the subject of which categories are concrete and which are abstract can be rather involved and we
will not go into it in this introductory book, except to remark that all small categories are concrete, a fact
which follows from Yoneda's lemma, to be proved later in the book.

Subcategories

Subcategories are defined as follows.

Definition  Let  be a category. A   of  is a category for which V W Vsubcategory the following properties
hold:
1  , as classes.) Obj ObjÐ Ñ © ÑW VÐ
2  For every ,) EßF − W

hom homW VÐEßFÑ © ÐEßFÑ

and the identity map  in  is the identity map  in , that is," "E EW V

Ð" Ñ œ Ð" ÑE EW V
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2  Composition in  is the composition from , that is, if) W V

0ÀE Ä F 1ÀF Ä Gand

are morphisms in , then the -composite  is the -composite .W V W1 ‰ 0 1 ‰ 0
If equality holds in part 2  for all , then the subcategory  is .) EßF − W W full �

Example 11 The category  of abelian groups is a full subcategory of the category , since theAbGrp Grp
definition of group morphism is independent of whether or not the groups involved are abelian. Put another
way, a group homomorphism between abelian groups is just a group homomorphism.

However, the category  of rings is a  subcategory of the category  of abelian groups,Rng AbGrpnonfull
since every ring is an additive abelian group but not all additive group homomorphisms  between0ÀV Ä W
rings are ring maps. Similarly, the category of differential manifolds with smooth maps is a nonfull
subcategory of the category , since not all continuous maps are smooth.Top �

However, the category  of abelian groups is a  subcategory of the category  of rings,AbGrp Rngnonfull
since not all additive group homomorphisms  between rings are ring maps. Similarly, the category0ÀV Ä W
of differential manifolds with smooth maps is a nonfull subcategory of the category , since not allTop
continuous maps are smooth.�

The Image of a Functor

Note that if , then the image  of  under the functor , that is, the setJ À Ê J JV W V V

ÖJE ± E ×− V

of objects and the set

ÖJ0 ± 0 − ÐEßFÑ×homV

of morphisms need  form a subcategory of . The problem is illustrated in Figure 3.not W

Figure 3

In this case, the composition  is not in the image . The only way that this can happen is ifJÐ1Ñ ‰ J Ð0Ñ JV

the composition  does not exist because  and  are not compatible for composition. For if  exists,1 ‰ 0 0 1 1 ‰ 0
then

JÐ1Ñ ‰ J Ð0Ñ œ JÐ1 ‰ 0Ñ − JV

Note that in this example, the object part of  is not injective, since . This is noJ JÐEÑ œ JÐGÑ œ \
coincidence.

Theorem 12 If the object part of a functor  is injective, then  is a subcategory of , under theJ À Ê JV W V W

composition inherited from .W

Proof. The only real issue is whether the -composite  of two morphisms in , when it exists, isW VJ1 ‰ J0 J
also in . But this composite exists if and only ifJV

J0À JE Ä JF J1À JF Ä JGand
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and so the injectivity of  on objects implies thatJ

0ÀE Ä F 1ÀF Ä Gand

Hence,  exists in  and so1 ‰ 0 V

JÐ1Ñ ‰ J Ð0Ñ œ JÐ1 ‰ 0Ñ − JV �

Diagrams

The purpose of a  is to describe a portion of a category . By “portion” we mean one or morediagram V

objects of  along with some of the arrows connecting these objects. let us begin by describing an informalV

definition of a diagram in a category.

As you may know, a  or  is a set of points, called , together with a set ofdirected graph digraph nodes
directed line segments, called , between (not necessarily distinct) pairs of nodes. An arc from a node toarcs
itself is called a .loop

As shown in Figure 4, a  in  consists of a digraph whose nodes are labeled with objects form  anddiagram V V

whose arcs from the node labeled  to the node labeled  are labeled with morphisms from  to . (In theE F E F
figure, the nodes are not drawn—only their labels are drawn.)

Figure 4

Now, this informal definition of a diagram suffices for many purposes. However, we will find it lacking
when we define the category of all diagrams of a category , and for this important purpose, a more formalV

definition is required. We will give that formal definition now and then connect the formal and informal
definitions.

Definition  Let  and  be categories. A  in  with   is a functor .] V V ] ] Vdiagram index category N À Ê �

Often, the index category is a finite category. Since the image  is “indexed” by the objects andN Ð Ñ]

morphisms of the index category , the objects in  are often denoted by lower case letters such as , ,] ] 7 8
: ;, . Figure 5 illustrates this definition.

Figure 5

As we remarked earlier,  need not be a subcategory of . In this example,  sends  and  to the sameN Ð Ñ N 8 :] V

object in  but since  and  are not compatible for composition, the image of  need not contain theV α " N
composition . Thus, the image of a functor simply contains  objects of  as well as N ‰ N" α Vsome some
morphisms between these objects.
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The Digraph-Based Version of a Diagram

To connect this formal definition of a diagram with the informal definition given earlier, let us slowly
morph the formal definition. First, we give the formal definition of a labeled digraph, along with some
terminology that we will need later in the book.

Definition
1  A  or   consists of a nonempty class  of  or  and for) ( )directed graph digraph vertices nodesW i WÐ Ñ

every ordered pair  of nodes, a possibly empty  set  of  from  to . We say that anÐ@ß AÑ Ð@ß AÑ @ A( ) T arcs
arc in    and  . Two arcs from  to  are said to be . The arcs from  toTÐ@ß AÑ @ A @ A @leaves enters parallel
itself are called .loops

2  The cardinal number of arcs entering a node is called the  of the node and the cardinal) in-degree
number of arcs leaving a node is called the  of the node. The sum of the in-degree and theout-degree
out-degree is called the  of the node.degree

3  A   is a digraph for which each node is labeled by elements of a labeling class and) labeled digraphW

each arc is labeled by elements of a labeling class. We require that parallel arcs have distinct labels. A
labeled digraph is  if no two distinct nodes have the same label.uniquely labeled �

A  (or just ) in a labeled digraph  is a sequence of arcs of the formdirected path path W

/ − Ð@ ß @ Ñß / − Ð@ ß @ Ñßá ß / − Ð@ ß @ Ñ" " # # # $ 8" 8" 8T T T

where the ending node of one arc is the starting node of the next arc. The  of a path is the number oflength
arc  in the path.s

To create what we will call the  of a diagram , we first draw a digraph whosedigraph version N À Ê] V

nodes are labeled with the distinct objects of the index category  and whose arcs are labeled with the]

distinct morphisms of , subject to the obvious condition that the morphism  labels an arc from] 0ÀE Ä F
the node labeled  to the node labeled . This is referred to as the  for the diagram.E F underlying digraph
This is shown on the left in Figure 6.

Then, as shown on the right in Figure 6, we further label the nodes and arcs of the digraph with the image of
the functor . Note that the labels from the index category  are distinct, but the labels from  are notN ] V

necessarily distinct (in this example, ). It is clear that the original diagram  is fully recoverableN8 œ N: N
from the digraph version of the diagram and so the two versions are equivalent. The digraph view of a
diagram will be useful when we define morphisms between diagrams.

Figure 6

Note that if the object part of the diagram functor  is not injective, then two distinct nodes of theN
underlying graph will be labeled with the same object in . Although this is useful on occasion (we will useV

it precisely once), for most applications of diagrams (at least in this book),  is an embedding and so theN
nodes and arcs are  labeled.uniquely

Now, since the purpose of the objects and morphisms of the index category is to  the nodesuniquely identify
and arcs of the underlying digraph, once the digraph is drawn on paper, the nodes and arcs are uniquely
identified by their location and so the labels from  are no longer needed. For this reason, they are typically]
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omitted and we arrive at the informal definition of a diagram given earlier. This is why diagrams are often
drawn simply as in Figure 4.

We will use blackboard letters  to denote diagrams and if we need to emphasize the functor, weƒ „ …ß ß ßá
will write

ƒ ] VÐN À Ê Ñ

Commutative Diagrams

We consider that any directed path in a diagram is labeled by the  of the morphisms that labelcomposition
the arcs of the path, taken in the reverse order of appearance in the path. For example, the label of the path

E Ä F Ä G
0 1

in Figure 4 is .1 ‰ 0

A diagram  in a category  is said to  if for every pair  of objects in  and any pair ofƒ V ƒcommute ÐEßFÑ
directed paths from  to , , the corresponding path labels are equal. AE F one of which has length at least two
diagram that commutes is called a  or .commuting diagram commutative diagram

For example, the diagram in Figure 1 commutes since

3 7 5 3 7 5" " # #‰ œ ‰ œand

Note that we exempt the case of two parallel paths both having length one so that a diagram such as the one
in Figure 7 can be commutative without forcing  and  to be the same morphism. The commutativity0 1
condition for this diagram is thus .0 ‰ / œ 1 ‰ /

B
g

A
f

E
e

Figure 7

Special Types of Morphisms

Now let us briefly discuss a topic that may not be  among category theorists these days, but seemsde rigueur
to this author to be somewhat enlightening for a beginning course in the subject.

For functions, the familiar concepts of  (both one-sided and two-sided) and  (bothinvertibility cancelability
one-sided and two-sided) are both categorical concepts. However, the familiar concepts of injectivity and
surjectivity are  categorical because they involve the  of a set.not elements

In the category , morphisms are just set functions. For this particular category, the concepts of right-Set
invertibility, right-cancelability and surjectivity are equivalent, as are the concepts of left-invertibility, left-
cancelability and injectivity. However, things fall apart totally in arbitrary categories. As mentioned, the
concepts of injectivity and surjectivity are not even categorical concepts and so must go away. Moreover,
the concepts of invertibility and cancelability are not equivalent in arbitrary categories!

We will explore the relationship between invertibility and cancelability for morphisms in an arbitrary
category. In the exercises, we will ask you to explore the relationship between these concepts and the
noncategorical concepts of injectivity and surjectivity, when they exist in the context of a particular
category.

Let us begin with the formal definitions.

Definition  Let  be a category.V
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1  A morphism  is  if there is a morphism , called a  of) 0ÀE Ä F 0 ÀF Ä Eright-invertible right inverseV

0 , for which

0 ‰ 0 œ "V F

2  A morphism  is  if there is a morphism , called a  of ,) 0ÀE Ä F 0 ÀE Ä F 0left-invertible left inverseP

for which

0 ‰ 0 œ "P E

3  A morphism  is  or an  if there is a morphism , called the) 0ÀE Ä F 0 ÀF Ä Einvertible isomorphism "

( )two-sided inverse  of , for which0

0 ‰ 0 œ " 0 ‰ 0 œ "" "
E Eand

In this case, the objects  and  are  and we write .E F E ¸ Fisomorphic �

Note that the  term  says nothing about injectivity or surjectivity, for it must becategorical isomorphism
defined in terms of morphisms only!

In fact, this leads to an interesting observation. For categories whose objects are sets and whose morphisms
are set functions, we can define an isomorphism in two ways:

1) (Categorical definition) An isomorphism is a morphism with a two-sided inverse.
2) (Non categorical definition) An isomorphism is a bijective morphism.

In most cases of algebraic structures, such as groups, rings or vector spaces, these definitions are equivalent.
However, there are cases where only the categorical definition is correct.

Figure 8

For example, as shown in Figure 8, let  be a poset in which  and  are incomparable and letT œ Ö+ß ,× + ,
U œ Ö!ß "× ! . " 0À T Ä U 0+ œ ! 0, œ " 0 be the poset with . Let  be defined by  and . Then  is a bijective
morphism of posets, that is, a bijective monotone map. However, it is not an isomorphism of posets!

Proof of the following familiar facts about inverses is left to the reader.

Theorem 13
1  Two-sided inverses, when they exist, are unique.)
2  If a morphism is both left and right-invertible, then the left and right inverses are equal and are a)

( )two-sided  inverse.
3  If the composition  of two isomorphisms is defined, then it is an isomorphism as well and) 0 ‰ 1

Ð0 ‰ 1Ñ œ 1 ‰ 0" " "
�

Definition  Let  be a category.V

1  A morphism  is  if) 0ÀE Ä F right-cancellable

1 ‰ 0 œ 2 ‰ 0 Ê 1 œ 2

for any parallel morphisms . A right-cancellable morphism is called an  or .1ß 2ÀF Ä G epic epi( )
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2  A morphism  is , if) 0ÀE Ä F left-cancellable

0 ‰ 1 œ 0 ‰ 2 Ê 1 œ 2

for any parallel morphisms . A left-cancellable morphism is called a  or a1ß 2À G Ä E monic (
mono).�

In general, invertibility is stronger than cancellability. We also leave proof of the following to the reader.

Theorem 14 Let  be morphisms in a category .0ß 1 V

1   left-invertible  left-cancellable monic) ( )0 Ê 0
2   right-invertible  right-cancellable epic) ( )0 Ê 0
3   invertible  monic and epic.) 0 Ê 0
Moreover, the converse implications fail in general.�

It is also true that a morphism can be both monic and epic (both right and left cancellable) but fail to be an
isomorphism.  ( : Think about the more unusual examples of categories.) On the other hand, one-sidedHint
cancelability together with one-sided invertibility (on the other side, of course) do imply an isomorphism.

Theorem 15 Let  be a morphism in a category .0ÀE Ä F V

1  If  is monic left-cancellable  and right-invertible, then it is an isomorphism.) ( )0
2  If  is epic right-cancellable  and left-invertible, then it is an isomorphism.) ( )0 �

Initial, Terminal and Zero Objects

Anyone who has studied abstract algebra knows that the trivial object (the trivial vector space , theÖ!×
trivial group , etc.) often plays a key role in the theory, if only to the point of constantly needing to beÖ"×
excluded from consideration. In general categories, there are actually two concepts related to these trivial or
“zero” objects.

Definition  Let  be a category.V

1  An object  is  if for every , there is exactly one morphism from  to .) M − E − M EV Vinitial
2  An object  is  if for every , there is exactly one morphism from  to .) X E − E Xterminal V

3  An object that is both initial and terminal is called a .) zero object�

Note that if  is either initial or terminal then . The following simple result is key.G ÐGßGÑ œ Ö" ×hom G

Theorem 16 Let  be a category. Any two initial objects in  are isomorphic and any two terminal objectsV V

in  are isomorphic.V

Proof. If  and  are initial, then there are unique morphisms  and  and soE F 0ÀE Ä F 1ÀF Ä E
1 ‰ 0 − ÐEßEÑ œ Ö" × 0 ‰ 1 œ " E ¸ Fhom E F. Similarly,  and so . A similar proof holds for terminal
objects.�

Example 17 ,In the category  the empty set is the only initial object and each singleton-set is terminal.Set
Hence, Set Grp has no zero object. In , the trivial group  is a zero object.Ö"× �

Zero Morphisms

In the study of algebraic structures, one also encounters “zero” functions, such as the zero linear
transformation and the map that sends each element of a group  to the identity element of another groupK
L . Here is the subsuming categorical concept.

Definition  Let  be a category with a zero object . Any morphism  that can be factored throughV ! 0ÀE Ä F
the zero object, that is, for which

0 œ 2 ‰ 1!F E!

for morphisms  and  is called a .2À ! Ä F 1ÀE Ä ! zero morphism�
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To explain this rather strange looking concept, let us take the case of linear algebra, where the zero linear
transformation  between vector spaces is usually defined to be the map that sends any vector inDÀ Z Ä [
Z [ [ to the zero vector in . This definition is not categorical because it involves the zero  in . Toelement
make it categorical, we interpose the  . Indeed, the zero transformation  can bezero vector spaceÖ!× D
written as the composition , whereD œ 2 ‰ 1

1À Z Ä Ö!× 2À Ö!× Ä [and

Here, both  and  are uniquely defined by their domains and ranges, without mention of any elements. The1 2
point is that  has no choice but to send every vector in  to the zero vector in  and  must send the1 Z Ö!× 2
zero vector in  to the zero vector in . Using  and , we can avoid having to explicitly mention anyÖ!× [ 1 2
individual vectors!

In the category of groups, the zero morphisms are precisely the group homomorphisms that map every
element of the domain to the identity element of the range. Similar maps exist in  and .CRng Mod

It is clear that any morphism entering or leaving  is a zero morphism.!

Theorem 18 Let  be a category with a zero object .V !
1  There is exactly one zero morphism between any two objects in .) V

2  Zero morphisms “absorb” other morphisms, that is, if  is a zero morphism, then so are ) DÀ E Ä F 0 ‰ D
and , whenever the compositions make sense.D ‰ 1 �

Duality

The concept of duality is prevalent in category theory.

Dual or Opposite Categories

For every category , we may form a new category , called the  or the V Vop opposite category dual category
whose objects are the same as those of , but whose morphisms are “reversed”, that is,V

hom homV VopÐEßFÑ œ ÐFßEÑ

For example, in the category  the morphisms from  to  are the set functions from  to . This maySetop E F F E
seem a bit strange at first, but one must bear in mind that morphisms are not necessarily functions in the
traditional sense: By definition, they are simply elements of the hom-sets of the category. Therefore, there is
no reason why a morphism from  to  cannot be a function from  to .E F F E

The rule of composition in , which we denote by , is defined as follows: If  andVop
op‰ 0 − ÐEßFÑhomVop

1 − ÐFßGÑhomVop , then

1 ‰ 0 − ÐEßGÑop homVop

is the morphism . In short0 ‰ 1 − ÐGßEÑ ßhomV

1 ‰ 0 œ 0 ‰ 1op

Note that  and so every category is a dual category.Ð Ñ œV Vop op

It might occur to you that we have not really introduced anything , and this is true. Indeed, everynew
category is a dual category (and conversely), since it is dual to its own dual. But we have introduced a new
way to look at old things and this will prove fruitful. Stay tuned.

The Duality Principle

Let  be a property that a category  may possess, for example,  might be the property that  has an initial: :V V

object. We say that a property  is a  to  if for all categories ,: :op dual property V
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V V has iff  has : :op op

Note that this is a symmetric definition and so we can say that two properties are dual (or not dual) to one
another. For instance, since the initial objects in  are precisely the terminal objects in , the properties ofV Vop

having an initial object and having a terminal object are dual. The property of being isomorphic is ,self-dual
that is,  in  if and only if  in .E ¸ F E ¸ FV Vop

In general, if  is a statement about a category , then the  is the same statement stated for= V dual statement
the dual category , but expressed in terms of the original category. For example, consider the statementVop

the category  has an initial objectV

Stated for the dual category , this isVop

the category  has an initial objectVop

Since the initial objects in  are precisely the terminal objects in , this is equivalent to the statementV Vop

the category  has a terminal objectV

which is therefore the dual of the original statement.

A statement and its dual are not, in general, logically equivalent. For instance, there are categories that have
initial objects but not terminal objects. However, for a special and very common type of conditional
statement, things are different.

Let  be a set of properties and let  be the set of dual properties. Let C Cœ Ö; ± 3 − M× œ Ö; ± 3 − M× :3 3
op op

be a single property. Consider the statement

1) If a category  has , then it also has  (abbreviated ).V C C: Ê :

Since all categories have the form  for some category , this statement is logically equivalent to theV Vop

statement

2) If a category  has , then it also has .V Cop :

and this is logically equivalent to

3) If a category  has , then it also has  (abbreviated ).V C Cop op op op: Ê :

The fact that

C CÊ : Ê :iff op op

is called the  for categories. Note that if  is , that is, if , then theprinciple of duality self-dualC C Cœ op

principle of duality becomes

C CÊ : Ê :iff op

Of course, the empty set of properties is self-dual. Moreover, the condition  means that all categoriesg Ê :
possess property . Hence, we deduce that:

if all categories possess a property , then all categories also possess any dual property:
:op

For example, all categories possess the property that initial objects (when they exist) are isomorphic. Hence,
the principle of duality implies that all terminal objects (when they exist) are isomorphic.
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New Categories From Old Categories

There are many ways to define new categories from old categories. One of the simplest ways is to take the
Cartesian product of the objects in two categories. There are also several important ways to turn the
morphisms of one category into the objects of another category.

The Product of Categories

If  and  are categories, we may form the  , in the expected way. Namely, theU V U Vproduct category ‚
objects of  are the ordered pairs , where  is an object of  and  is an object of . AU V U V‚ ÐFßGÑ F G
morphism from  to  is a pair  of morphisms, where  and .F ‚ G F ‚ G Ð0ß 1Ñ 0À F Ä F 1ÀG Ä Gw w w w

Composition is done componentwise:

Ð0 ß 1Ñ ‰ Ð2ß 5Ñ œ Ð0 ‰ 2ß 1 ‰ 5Ñ

A functor  from a product category  to another category is called a .J À ‚ Ê ‚T U V T U bifunctor

The Category of Arrows

Given a category , we can form the   of  by taking the objects to be the morphismsV V Vcategory of arrows Ä

of .V

B

B'

α

f

g
A'

A

β

Figure 9

A morphism in , that is, a  is defined as follows. A morphism from VÄ morphism between arrows 0ÀE Ä F
to  is a  of arrows1ÀE Ä Fw w pair

Ð À E Ä E ß ÀF Ä F Ñα "w w

in  for which the diagram in Figure 9 commutes, that is, for whichV

1 ‰ œ ‰ 0α "

We leave it to the reader to verify that  is a category, with composition defined pairwise:VÄ

Ð ß Ñ ‰ Ð ß Ñ œ Ð ‰ ß ‰ Ñ# $ α " # α $ "

and with identity morphisms .Ð" ß " ÑE F

Comma Categories

Comma categories form one of the most important classes of categories. We will define the simplest form of
comma category first and then generalize twice.

Arrows Entering (or Leaving) an Object

The simplest form of comma category is defined as follows. Let  be a category and let . We willV VE −
refer to  as the . The category of  , denoted by  has for its objectsE E ÐE Ä Ñanchor object arrows leaving V

the set of all pairs

ÖÐFß 0À E Ä FÑ ± F − ×V

Note that since a morphism uniquely determines its codomain, we could define the objects of  to beÐE Ä ÑV
just the morphisms  themselves but the present definition, which includes the codomains0ÀE Ä F
explicitly, is more traditional.
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B
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gf

α

B

A

Cα

gf

Figure 10

As shown on the left in Figure 10, a morphism  in  is just a morphismα VÀ ÐFß 0Ñ Ä ÐGß 1Ñ ÐE Ä Ñ
α VÀ F Ä G  in  between the codomains for which the triangle commutes, that is, for which

α ‰ 0 œ 1

The category of arrows leaving  is also called a .E coslice category

Similarly, the category  of  the anchor object  has for its objects the pairsÐ Ä EÑ EV arrows entering

ÖÐFß 0ÀF Ä EÑ ± F − ×V

and as shown on the right in Figure 10, a morphism  in  is a morphismα VÀ ÐFß 0Ñ Ä ÐGß 1Ñ Ð Ä EÑ
α VÀ F Ä G  in  between the domains for which

1 ‰ œ 0α

The category of arrows entering  is also called a .E slice category

The First Generalization

To generalize this one step (see Figure 11), let  be a functor and let  be the .J À Ê E −V W W anchor object

Figure 11

As shown on the left in Figure 11, the objects of the comma category  are the pairsÐE Ä JÑ

ÖÐGß 0À E Ä JGÑ ± G − ×V

As to morphisms, as shown on the right in Figure 11, if

\ œ ÐG ß 0 À E Ä JG Ñ ] œ ÐG ß 0 À E Ä JG Ñ" " " # # #and

are objects in , then a morphism  in  is a morphism  in  with theÐE Ä JÑ À\ Ä ] ÐE Ä JÑ ÀG Ä Gα α V" #

property that

J ‰ 0 œ 0α " #

Note that the comma category  defined earlier is just , where where  is the identityÐE Ä Ñ ÐE Ä M Ñ MV V V

functor on . We can also define the comma category  by reversing the arrows.V ÐJ Ä EÑ

The Final Generalization

As a final generalization, let  and  be functors with the same codomain. As shown inJ À Ê KÀ ÊU W V W

Figure 12, an object of the   is a triplecomma categoryÐJ Ä KÑ
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ÐFßGß 0À JF Ä KGÑ

where ,  and  is a morphism in .F − G − 0U V W

Figure 12

As to morphisms, as shown in Figure 13,

B FB

GC

f

B'
α FB'

GC'

g

Fα

GβG

F

C C'
β

V W

U

Figure 13

a morphism from  to  is a pair of morphismsÐFßGß 0À JF Ä KGÑ ÐF ßG ß 0 À JF Ä KG Ñw w w w w

Ð À F Ä F ß À G Ä G Ñα "w w

for which the square commutes, that is,

K ‰ 0 œ 0 ‰ J" αw

The composition of pairs is done componentwise.

Example 19 Let  be a category and let  be a set-valued functor. The objects of the V VJ À Ê Set category of
elements  are ordered pairs , where  and . A morphism  is aEltsÐJ Ñ ÐGß +Ñ G − + − JG 0À ÐGß +Ñ Ä ÐHß ,ÑV

morphism  for which . We leave it to the reader to show that this is a special type of0À G Ä H J0Ð+Ñ œ ,
comma category.�

Hom-Set Categories

Rather than treating individual arrows as the objects of a new category, we can treat entire hom-sets

Ö ÐEß\Ñ ± \ − ×homV V

as the objects of a category . As to the morphisms, referring to the left half of Figure 14, letVÐEß - Ñ
hom homV VÐEß\Ñ ÐEß ] Ñ 0À\ Ä ] and  be hom-sets. Then for each morphism  in , there is a morphismV

0 À ÐEß\Ñ Ä ÐEß ] ÑÃ hom homV V

defined in words as “follow by ,” that is,0

0 Ð Ñ œ 0 ‰Ã α α

for all .α − ÐEß\ÑhomV
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X

A

Y
f←

homC(A,X) homC(A,Y)

f
X

A

Y
f

homC(X,A) homC(Y,A)

f→

Figure 14

We can also define a category  whose objects areVÐ - ßEÑ

Ö Ð\ßEÑ ± \ − ×homV V

As shown on the right half of Figure 14, for each morphism  in , there is a morphism in0À\ Ä ] V

VÐ - ßEÑ Ð] ßEÑ Ð\ßEÑ from  and :hom homV V

0 À Ð] ßEÑ Ä Ð\ßEÑÄ hom homV V

defined by “precede by ,” that is,0

0 Ð Ñ œ ‰ 0Ä α α

Note that any category  can be viewed as a hom-set category by adjoining a new initial “object”  not in V V‡
and defining a new morphism  from  to each object . Then each object  can be0 À ‡ Ä E ‡ E − E −E V V

identified with its hom-set . Also, the morphisms  in  are identified with thehomÐ‡ß EÑ 0ÀE Ä F V

morphisms

0 À Ð‡ß EÑ Ä Ð‡ßFÑÃ hom hom

of hom-sets.

Exercises

1. Prove that identity morphisms are unique.
2. If  is fully faithful, prove thatJ À ÊV W

JG ¸ JG Ê G ¸ Gw w

3. Indicate how one might define a category without mentioning objects.
4. A category with only one object is essentially just a monoid. How?
5. Let  be a real vector space. Define a category  as follows. The objects of  are the vectors in . ForZ ZV V

?ß @ − Z , let

homÐ?ß @Ñ œ Ö+ − ± <   " <+? œ @×‘ there is  such that 

Let composition be ordinary multiplication. Show that  is a category.V

6. a) Prove that the composition of monics is monic.
 b) Prove that if  is monic, then so is .0 ‰ 1 1
 c) Prove that if  is epic, then so is .0 ‰ 1 0
7. Find a category with nonidentity morphisms in which every morphism is monic and epic, but no

nonidentity morphism is an isomorphism.
8. Prove that any two initial objects are isomorphic and any two terminal objects are isomorphic.
9. Find the initial, terminal and zero objects in  and .Mod CRngV

10. Find the initial, terminal and zero objects in the following categories:
 a) Set Set‚
 b) SetÄ

11. In each case, find an example of a category with the given property.
 a) No initial or terminal objects.
 b) An initial object but no terminal objects.
 c) No initial object but a terminal object.
 d) An initial and a terminal object that are not isomorphic.
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12. Let  be a diagram in a category . Show that there is a smallest subcategory  of  for which  is aƒ V W V ƒ

diagram in WÞ
13. Let  and  be categories. Prove that the product category  is indeed a category.V W V W‚
14. Let  and  be functors with the same codomain.J À Ê KÀ ÊU W V W

 a) Let  be a commutative ring with unit. Show that the category  is the category of -V ÐV Ä Ñ VCRng
algebras.

 b) Let  be a terminal element of a category . Describe .> Ð Ä >ÑV V

15. Show by example that the following do  hold in general.not
 a) monic injectiveÊ
  : Let  be the category whose objects are the subsets of the integers  and for whichHint V ™

homVÐEßFÑ E F is the set of all  set functions from  to , along with the identitynonnegative
function when . Consider the absolute value function .E œ F À Äα ™ �

 b) injective left-invertibleÊ  
  : Consider the inclusion map  between rings.Hint , ™ �À Ä
 c) epic surjectiveÊ
  : Consider the inclusion map  between monoids.Hint , � ™À Ä
 d) surjective right-invertibleÊ
  : Let  be a cyclic group and let . Consider the canonical projection mapHint G œ Ø+Ù L œ Ø+ Ù#

1À G Ä GÎL œ ÖLß +L×.
16. Prove the following:
 a  For morphisms between sets, monoids, groups, rings or modules, any monic is injective. : Let) Hint

0ÀE Ä \ E be monic. Extend the relevant algebraic structure on  coordinatewise to the cartesian
product  and letE ‚ E

W œ ÖÐ+ß ,Ñ − E ‚ E ± 0Ð+Ñ œ 0Ð,Ñ×

Let  be projection onto the first coordinate and let  be projection onto the3 3" #À W Ä E À W Ä E
second coordinate. Apply  to .0 ‰ Ð+ß ,Ñ − W33

 b  For morphisms between sets, groups or modules, epic implies surjective. : suppose that) Hint
0ÀE Ä \ M œ Ð0Ñ :ß ;À\ Ä ] is not surjective and let . Find two distinct morphisms  thatim
agree on , then  but , in contradiction to epicness. (For groups, this is a bitM : ‰ 0 œ ; ‰ 0 : Á ;
hard.)

 c  However, for morphisms between monoids or rings, epic does not imply surjective. : Consider) Hint
the inclusion map  between monoids and the inclusion map  between rings., � ™ , ™ �À Ä À Ä

17. (For those familiar with the tensor product) We want to characterize the epimorphisms in , theCRng
category of commutative rings with identity. Let  and . Then  is an -moduleEßF − 0ÀE Ä F F ECRng
with scalar multiplication defined by

+, œ 0Ð+Ñ,

for  and . Consider the tensor product  of the -module  with itself. Show that  is+ − E , − F F Œ F E F 0
an epic if and only if  for all . : any ring map  defines an -module" Œ , œ , Œ " , − F ÀE Ä V EHint -

structure on .V
18. Let  be a category with a zero object. Show that the following are equivalent:V

 1   is an initial object.) G
 2   is a terminal object.) G
 3  ) +G GGœ !
 4  ) homVÐGßGÑ œ Ö! ×GG

Image Factorization Systems

An  for a category  is a pair  whereimage factorization system V X `Ð ß Ñ
a   is a nonempty class of epics of , closed under composition.) X V

b   is a nonempty class of monics of , closed under composition.) ` V

c  Any isomorphism of  belongs to  and .) V X `
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d  Every morphism  can be factored as  where  and . Moreover, this) 0ÀE Ä F 0 œ 7 ‰ / 7 − / −` X

factorization is unique in the following sense: If  with  and , then there is an0 œ 7 ‰ / 7 − / − Iw w w w`

isomorphism  for which the following diagram commutes:)À M Ä N

I

B

m

m'J

∃θA

e

e'

Figure 15

 that is,  and .) )‰ / œ / 7 ‰ œ 7w w

19. Find an image factorization system for .Set
20. Find an image factorization system for .Grp
21. Prove the : Let  be an image factorization system. Let  anddiagonal fill-in theorem Ð ß Ñ 0 À E Ä GX `

1ÀF Ä H / − 7 − be morphisms in  and let  and , with the square in Figure 16 commutes.V X `

B

D

f g

C

A
e

m

∃h

Figure 16

 Then there exists a morphism  for which the diagram in Figure 16 commutes.2ÀF Ä G

B

D

f g

C

A
e

m

∃θ
e1

m1

I J

e2

m2


