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Preface

The purpose of this book is to provide an introthrctto thebasic language of category theory. It is
intended for the graduate student, advanced uratfugte student, non specialist mathematician ensst
working in a need-to-know area. The treatment istralt in nature, with examples drawn mainly from
abstract algebra.

Motivation

Category theory is a relatively young subject, fibeshin the mid 1940's, with the lofty goalswfification
clarification andefficiency in mathematics.

Indeed, Saunders Mac Lane, one of the foundingfatbf category theory (along with Samuel Eilenherg
says in the first sentence of his baBategories for the Working MathematicidiCategory theory starts
with the observation that many properties of mathgral systems can be unified and simplified [¢iad!]

by a presentation with diagrams of arrows.” Of seyrunification and simplification are common theme
throughout mathematics.

To illustrate these concepts, consider thel®et navizero real number under multiplication, the set
M = M(n, k) of n x k matrices over the complex numbers under aafdiéind the sef  of bijections of
the integers under composition. Very few matheraigwould take the time to prove that inversesach

of these sets are unique—They would simply notedhah of these is an example ajraup and prove in
one quick line that the inverse of any “elementaigroup is unique, to wit, # an@ are inversasthe
group element , then

a=al = a(af) = (aa)f = 17 =

This at onceclarifies the role of uniqueness of inverseshmying that this property hasthing whatever
to do with real numbers, matrices or bijectiotishas to do only with associativity and the itiigrproperty
itself. This alsaunifies the concept of uniqueness oéises because it shows that uniqueness of invierses
each of these three cases is really a single congyally, it makes life morefficient for mathematicians
because they can prove uniqueness of inversaifokxamges of groupis one fell swoop , as it were.

Now, this author knows from over 40 years of exgreee teaching mathematics that the clarifying,yimf;
economizing concept of a group is far too absti@cmost lay persons (non mathematicians) as veeiba
many undergraduate students of mathematics (asceatn some graduate students). However, at the sam
time, the concept of a group is a most naturalllgeabstract-at-all concept for most mathematiciand a
great many others, such as many physicists, fanpka

Now, category theory attempts to do the samalforf mathematics (perhaps a bit of a hyperbole) asgro
theory does for the cases described above. Howrerarious reasons, even a great many mathemasici
find category theory to be too abstract for genemhprehension. Perhaps one reason for this is that
category theory is not introduced to students i retural way (pardon the pun). To be more specific
natural way to introduce category theory is slovysmall bites, in beginning graduate classedgelaa,
logic, topology, geometry and so on. For it woukkm that plunging most students into a full-fledged
course in category theory designed to be as corapsife as our common courses in algebra, logic,
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topology and so on is simply too much abstractibore time for all but those who are ordained by th
gods to be among our most abstract thinkers. Theorfar teaching category theory should be “easysdo
at first.”

Hence this book.

The Five Concepts of Category Theory

It can be said that there are fiv@jor  concepts iagmaly theory, hamely,

Categories

Functors

Natural transformations
Universality

Adjoints

Some would argue that each of these concepts wasriied” or “discovered” in order to produce th&tne
concept in this list. For example, Saunders Macllaingself is reported to have said: “I did not inven
category theory to talk about functors. | invenitetd talk about natural transformations.”

Whether this be true or not, many students of nmastties are finding that the language of categoepith

is popping up in many of their classes in abstagebra, lattice theory, number theory, differdntia

geometry, algebraic topology and more. Also, catgditeory has become an important topic of study fo

many computer scientists and even for some matheahahysicists. Hopefully, this book will fill aged

for those who require an understanding of ltlasic eptxcof the subject. If the need or desire should
arise, one can then turn to more lengthy and acdhtreatments of the subject.

This author believes that one of the major stungbbfocks to gaining a basic understanding of catego
theory lies in thenotation and th&erminology that is most commarsgd by authors of the subject, both
of which can quickly overwhelm the uninitiated. Acdingly, in this book, both the terminology ane th
notation are “relaxed” somewhat in an effort tothet reader focus more on the concepts than tlypidae
and notation.

Coverage

The first chapter of the book introduces the d&éins of category and functor and discusses diagram
duality, initial and terminal objects, special tgpef morphisms and some special types of categories
particularly comma categories and hom-set categioi@hapter 2 is devoted to functors and natural
transformations, concluding with Yoneda's lemma.

Chapter 3 introduces the concept of universality &mapter 4 continues the discussion by introducing
cones, limits and the most common categorical cocisbns: products, equalizers, pullbacks and
exponentials (and their duals). The chapter cordwdth a theorem on the existence of limits. Caaptis
devoted to adjoints and adjunctions.

Thanks

| would like to thank my students Phong Le, Surike@y, Timothy Choi, Josh Chan, Tim Tran and Zaghar
Faubion, who attended my lectures on a much exphrdesion of this book and offered many helpful
suggestions.
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Chapter 1
Categories

Foundations

Before giving the definition of a category, we mhgefly (and somewhat informally) discuss a notimm
the foundations of mathematics. In category theong often wishes to speak of “the category oj &ats”
or “the category of (all) groups.” However, it ilvknown that these descriptions cannot be madeige
within the context of sets alone.

In particular, not all “collections” that one caafihe informally though the use of the English laage, or
even formally through the use of the language bfteory, can be considered sets without produsoige
well-known logical paradoxes, such as the Russatgox of 1901 (discovered by Zermelo a year aarlie
More specifically, if¢p(x) is a well-formed formula eét theory, then the collection

X = {setsz | ¢(z) is trup

cannot always be viewed as a set. For exampldathity of all sets, or of all groups, cannot be sidered

a set. Nonetheless, it is desirable to be ablepfdyasome of the operations of sets, such as uarah
cartesian product, to such families. One way tdeaghthis goal is through the notion otlass . Evesy s
is a class and the classes that are not sets l&gée paper classes Now we can safely speak of ttlass  of
all sets, or thelass of all groups. Classes have noditlye properties of sets. However, while everyodet
set is an element of another set, no class camlseaent of another class. We can now state kieat t
family X defined above is a class without apparemt@diction.

Another way to avoid the problems posed by theclaigbaradoxes is to use the concept of dfset dcalle
universe The elements dff are callesinall sets . Some authors tefdresubsetsofl/ as setsand some
use the terneclasses. In order to carry out “ordinary neatiatics” within the univers , it is assumed to be
closed under the basic operations of set theoch as the taking of ordered pairs, power sets aiwhs.

These two approaches to the problem of avoidindatjieal paradoxes result in essentially the sdmeerty
and so we will generally use the language of sadscéasses, rather than universes.

The Definition

We can now give the definition of a category.

Definition A categoryC consists of the following:

1) (Objects) A classObj(C) whose elements are called dbgects . lugdomnary to writed € C in
place ofA € Obj(C) .

2) (Morphisms) For each (not necessarily distinct) pair of atigeA, B € C, a sehonx(A, B) , called
the hom-set for the paif A, B) . The elementshafm:(A, B)  are callegrphisms mapsor arrows
fromA toB . Iff € hom(A, B) , we also write

fA—)B or fAB
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The objectA = dom(f) is called thdomain of and the objétt= codonf) adled the
codomainof f.

3) Distinct hom-sets are disjoint.

4) (Composition) For f € hom:(A, B) andg € hom(B,C) there is a morphisge f € hom(A,C)
called thecomposition of; witly . Moreover, composition isa@gative:

fo(goh)=(fog)oh

whenever the compositions are defined.
5) (ldentity morphisms) For each objectA € C there is a morphism € hom:(A,A) , called th
identity morphism for A, with the property that if4z € hom:(A, B) then

lpo fap=fap and fapoly= fap

The class of all morphisms 6f is denotedviny (C) O

A variety of notations are used in the literatwwelfom-sets, including
(A,B), [A,B], C(A,B) and MoxA,B)

(We will drop the subscrigf  ihom:  when no confusieili arise.)

We should mention that not all authors require prop3) in the definition of a category. Also, some
authors permit the hom-sets to be classes. IncHse, the categories for which the hom-classesedseis
called alocally small category. Thus, all of our categories are locathall. A category’ for which both
the clasg0bj(C) and the classlor (C) are sets is calledraall category . Otherwise, lisdca large
category.

Two arrows belonging to the same hom+set( A, B) are tealtb parallel . We use the phrasg “ is a
morphismleaving A ” to mean that the domainjfof Ais ajfids'aimorphisnentering B " to mean that the
codomain off isB .

When we speak of a compositigno f , it is with theittamderstanding that the morphisms are
compatible, that is,dom(g) = codon(f) .

The concept of a category iery general . Here are some exmmpf categories. In most cases,
composition is the “obvious” one.

Example 1
The Categonpet of Sets
Obj is the class of all sets.
hom(A, B) is the set of all functions fro’t 8

The CategoryMon of Monoids
Obj is the class of all monoids.
hom(A4, B) is the set of all monoid homomorphisms frdm Bto

The Categoryrp of Groups
Obj is the class of all groups.
hom(A, B) is the set of all group homomorphisms frdm Bto

The CategonAbGrp of Abelian Groups
Obj is the class of all abelian groups.
hom(A4, B) is the set of all group homomorphisms frdm Bto

The CategorModr o -modules, wheRe is aring
Obj is the class of alk -modules.
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hom(A, B) is the set of alR -maps froth 18

The Categoryectr of Vector Spaces over a Fiéld
Obj is the class of all vector spaces o¥er
hom(A4, B) is the set of all linear transformations freim Ho

The Categorrng of Rings
Obj is the class of all rings (with unit).
hom(A, B) is the set of all ring homomorphisms frein  Bo

The CategoryfCRng of Commutative Rings with identity
Obj is the class of all commutative rings with identit
hom(A, B) is the set of all ring homomorphisms froin  Bo

The Categoryield of Fields
Obj is the class of all fields.
hom(A, B) is the set of all ring embeddings frofn Ao

The Categoryroset of Partially Ordered Sets
Obj is the class of all partially ordered sets.
hom(A, B) is the set of alinonotone functions froh # , thatfismctionsf: P — @ satisfying

p<q = [f(p)<flqg)

The Categorrel of relations
Obj is the class of all sets.
hom(A, B) is the set of all binary relations froch 1 |, tths, subsets of the cartesian product
A x B.

The Categoryfop of Topological Spaces
Obj is the class of all topological spaces.
hom(A, B) is the set of all continuous functions froin  Bo

The CategorsmoothMan of Manifolds with Smooth Maps
Obj is the class of all manifolds.
hom(A, B) is the set of all smooth maps frofn RoOl.

Example 2The class4 oéll categories does not form the déasbjects of a category, since otherwiée
would be an element @bj(A) , but no class is a membanather class. On the other hand, the cfass  of
all small categories does form the objects of anothéegmy, whose morphisms are thenctors , to be
defined a bit later in the chapter. This does nessent the same problem as the class of all cagsgor
becaus& is not small and therefore not a memhgLof

Here are some slightly more unusual categories.

Example 3Let F' be a field. The categoMatr »  of matrices o¥er as lobjects equal to the &t of
positive integers. Foin,n € Z* , the hom-seom(m,n) is the setalbfn x m matrices overf’ ,
composition being matrix multiplication. Why do weeverse the roles ofn and ? Well, if
M € homim,n) and N € honin, k), thenM has sizexm afd has dizen and so tugir
NM makes sense and has skze m , that is, it belongertém, k), as required. Incidentally, this is a
case in which the category is named after its mempé, rather than its objedis.

Example 4 A single monoidM defines a category with a singlgect M , where each element is a
morphism. We define the compositian b  to be the pebdb. This example applies to other algebraic
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structures, such as groups. All that is requiretthas there be an identity element and that theatips be
associative]

Example 5 Let (P, <) be a partially ordered set. The objects & tategoryPosetP, <) are the
elements ofP . Alsohom(a,b) is empty unles< b , in whichedasm(a,bd) contains a single element,
denoted byzb . Note that the hom-sets specify thatioel < onP . As to composition, there is really only
one choice: Ifab:a — b andc:b — ¢ then it follows that< b <c¢ and®e& ¢ which implies that
hom(a, c¢) # 0. Thus, we setc o ab = ac . The hom-d&dm(a,a)  contains only thatigemorphism for
the objects .

As a specific example, you may recall that eaclitipeshatural number. € N is defined to be the setlof a
natural numbers that precede it:

n={0,1,...,n—1}

and the natural numbér is defined to be the emgityThus, natural numbers are ordered by memipershi
that is,,» < n if and only ifn € n and se is the set of mditural numbergess thann . Each natural
numbern defines a category whose objects are @saxits and whose morphisms describe this order
relation. The category is sometimes denoted bg faaler. [I

Example 6 A category for which there iat most one morphism betweeprgwair of (not necessarily
distinct) objects is called preordered category orthin category (f is a thategory, then we can use
the existenceof a morphism to define a binary relation loa objects o€ , namelyl < B if there exists a
morphism fromA toB . It is clear that this relatienreflexive and transitive. Such relations ardechl
preorders. (The ternpreorder is used in a different sense in comtloirics.)

Conversely, any preordered clgg3, <) is a categorgranvthe objects are the elements”of  and there
is a morphismf,z fromA taB if and only < B (and theaee no other morphisms). Reflexivity
provides the identity morphisms and transitivitpyides the composition.

More generally, iiC is any category, then we cae tigeexistence of a morphism to define a preorder on
the objects of , namelyd < B if there is at least ormphism fromA ta3 O

Example 7 Consider a deductive logic system, such as the@gsitional calculus. We can define two
different categories as follows. In both caseswh#-formed formulas (wffs) of the system are tigects
of the category. In one case, there is one morpfrism the wffa to the wff3 if and only if we can dece

(£ givena . In the other case, we define a morphismir to3 to be apecific deduction of from |, that
is, a specific ordered list of wffs starting withand ending with3 for which each wff in the listegher an
axiom of the system or is deducible from the prasiavffs in the list using the rules of deductiontloé
system]

The Categorical Perspective

The notion of a category is extremely general. Hexgethe definition igrecisely what is needed to set the
correct stage for the following two key tenets @thematics:

1) Morphisms (e.g. linear transformations, groupnbmorphisms, monotone maps) play an essentially
equal role alongside the mathematical structurasttiey morph (e.g. vector spaces, groups, partiall
ordered sets).

2) Many mathematical notions are best describedrins of morphisms between structures rather than i
terms of the individual elements of these structure

In order to implement the second tenet, one mustvgaccustomed to the idea of focusing on the
appropriatanaps between mathematical structures ahdmtheelementsof these structures. For example,
as we will see in due course, such important netama basis for a vector space, a direct produetabor
spaces, the field of fractions of an integral domaid the quotient of a group by a normal subgeaipbe
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described using maps rather than elements. In ety of the most important properties of theséonst
follow from their morphism-based descriptions.

Note also that one of the consequences of the ddeoet is that important mathematical notions tiende
definedonly up to isomorphismrather than uniquely.

An immediate example seems in order, even thougfajt take some time (and further reading) to place
perspective.

Example 8 Let V andW be vector spaces over a fiéld . Thereatedirect product o/ an®lV s
usually defined in elementary linear algebra baaskshe set of ordered pairs

VxW={(v,w)|veV,weW}
with componentwise operations:

(v,w) + (V,w) = (v+,w+w)
and

r(v,w) = (rv, rw)
for r € F'. One then defines thErojection maps
p:VxW =V and po:VxW —>W

by

pi(v,w)=v and pa(v,w) = w

However, the importance of these projection map®isaalways made clear, so let us do this now.

X
an
(o} :V c,
VxW
o
\Y, w
Figure 1

As shown in Figure 1, the ordered triglé x W, pv, pw) has thiowing universal property: Given
any vector spac& ovétr and any “projection-likait pf linear transformations

o: X —V and o: X - W
from X toV and¥ , respectively, there isimique lineansformation: X — V x W for which
proT=o01 and pyoT =09
Indeed, these two equations uniquely determing  arfigr € X because
7(z) = (p1(7(2)), p2(7(2))) = (01(2), 02())

It remains only to show that is linear, which éolls easily from the factthat amd are linear.

Now, the categorical perspective is that this ursakproperty is the essence of the direct prochtdgast
up to isomorphism. In fact, it is not hard to shimat if an ordered triple

U, \:U -V, A:U = W)
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has the universal property described above, théftfier any vector spac& ovéfr and any pair oéér
transformations

o: X —-V and o: X - W
there is aunique linear transformatienX — U  for which
AMoT=07 and Xy oT =09

thenU andV x W are isomorphic as vector spaces. Indeetme more advanced treatments of linear
algebra, the direct product of vector spacedefined  asagtriple that satisfies this universal property.
Note that, using this definitiothe direct product is defined only up to isomorphis

If this example seems to be a bit overwhelming nden't be discouraged. It can take a while to get
accustomed to the categorical way of thinking. ighhhelp to redraw Figure 1 a few times withowiking
at the boold

Functors

If we are going to live by the two main tenets afegory theory described above, we should immdgiate
discuss morphisms between categories! Structureprieg maps between categories are cdliedtors

At this time, however, there is much to say abaategories as individual entities, so we will biyefl
describe functors now and return to them in détaal later chapter.

The unabridged dictionary defines the tdumctor , frbmNew Latinfunctus (past participle ofungi : to
perform) as “something that performs a functioroperation.” The ternfunctor was apparently first used
by the German philosopher Rudolf Carnap (1891-12@Qepresent a special type of function sign. In
category theory, the terfiunctor was introduced by Sarailehberg and Saunders Mac Lane in their
paperNatural Isomorphisms in Group Theo#].

Since the structure of a category consistsath objects and its morphisms, a functor should mapaibj
to objects and morphisms to morphisms. This requin® different maps. Also, there are two versiohs
functors:covariant andcontravariant.

Definition LetC andD be categories.fAnctor F:C = D s a pair of functifas is customary, we use
the same symbdl  for both functipns :
1) Theobject part of the functor

F:0bj(C) — Obj (D)
maps objects id  to objectsTh
2) Thearrow part
F:Mor (C) —Mor (D)
maps morphisms i@ to morphismgin  as follows:
a) For acovariant functor ,
F:homy(A, B) — homy(F A, FB)
forall A, B € C, thatis,F' maps a morphisfiA — B @h toamadghFf: FA— FB inD.
b) For acontravariant functor ,
F:homy(A, B) — homy(F'B, FA)
forall A, B € C, thatis,F' maps a morphismtA — B (G toamaghf'f:FB — FA inD.

(Note the reversal of directipn .
We will refer to the restriction df twom:(A, B) adecal arrow part  ©f
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3) Identity and composition are preserved, that is,
Fly=1F4
and for a covariant functor,
F(go f)=FgoFf
and for a contravariant functor,
Flgof)=FfokFy

whenever all compositions are defingd.

As is customary, we use the same symibol for bwlobject part and the arrow part of a functor.Wile
also use a double arrow notation for functors. Thias expressiot:C = D implies thdt afid  are
categories and is read™ is a functor frém Tho FOr(readability sake in figures, we use a thiclowarto
denote functors.)

A functor I:C = C fromC to itself is referred to adfunctor on ¢ functor F: C = Set is called aet-
valued functor. We say that functor$’,G:C = D  with the same domain ardsgime codomain are
parallel and functors of the forli.C = D ame: D = C amwtiparallel

The termcovariant appears to have been first used in 185&imes Joseph Sylvester (who was quite fond
of coining new terms) as follows: “Covariant, a ¢tion which stands in the same relation to the i
function from which it is derived as any of itsdar transforms do to a similarly derived transfarhits
primitive.” In plainer terms, an operation is coeat if it varies in a way that preserves sometegla
structure or operation. In the present contextpwadant functor preserves the direction of arrans a
contravariantfunctor reverses the direction of arrows.

One way to view the concept of a functor is to kiofia (covariant) functof':C = D as a mapping of one-
arrow diagrams i€ ,

AL B

to one-arrow diagrams i,

rAtl rB

with the property that “identity loops” and “trialeg” are preserved, as shown in Figure 2.

F
e

A" >p FA— ' >Fg
—)
gof l FgoFf=F(gof) l
Figure 2

A similar statement holds for contravariant funstor

Composition of Functors

Functors can be composed in the “obvious” way. Bipatly, if /:C = D and G:D =- £ are functors,
thenG o F:C = £ is defined by

(G o F)(A) = G(FA)
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for A € C and

(GoF)(f)=G(F))
for f € home (A, B). We will often write the compositiofi o I &8
Special Types of Functors

Definition LetF:C = D be a functor.

1) F isfull if all of its the local arrow parts are gactive.

2) [ isfaithful if all of its local arrow parts are injeete.

3) [ isfully faithful (i.e., full and faithful) if all of its I@d arrow parts are bijective.
4) F is anembedding o irD ifitis fully faithful and thebject part off" is injectiv&l

We should note that the terambedding , as applied to fuscis defined differently by different authors.
Some authors define an embedding simply as afdlifaithful functor. Other authors define an embegd
to be a faithful functor whose object part is inijee. We have adopted the strongest definitiongesiit
applies directly to the important Yoneda lemma (caphater in the book).

Note that a faithful functo’:C = D need not be an emioggldfor it can send two morphisms from
differenthom sets to the same morphismZin . For instaricB A= A’ and FB = F'B’ then it may
happen that

Ffap=Fguap
which does not violate the condition of faithfulaeAlso, a full functor need not be surjectiveMar (C)
A Couple of Examples

Here are a couple of examples of functors. Wegiié more examples in the next chapter.

Example 9 The power set functor p: Set=- Set sends a set to its power gé#l) and sendissedc
function f: A — B to the induced functiofi p(A4) — p(B) that semds [0 (It is customary to use
the same notation for the function and its inducersion.) It is easy to see that this defines tfiali but
not full covariant functor.

Similarly, thecontravariant power set functor £: Set=- Set sends a sdt  to its powerset) aBdt
function f: A — B to the inducethverse functioft o(B) — p(A) thatseddss B ft6X C A. The
fact thatF' is contravariant follows from the wetidwn fact that

(fog) =g lof™ O

Example 10 The following situation is quite common. Lét becaegory. Suppose th@ is another
category with the property that every objectin amsobject irD and every morphisfnA — B ®f isa
morphismf: A — B ofD .

For instance, every object@rp is also an obje8&in we simply ignore the group operation. Also, gver
group homomorphism is a set function. Similarlyemvring can be thought of as an abelian group by
ignoring the ring multiplication and every ring megn be thought of as a group homomorphism.

We can then define a functé:C = D by sending an obfeetC to itself, thought of as an object
and a morphisnf: A — B i@ to itself, thought of as a rhésm inD .

Functors such as these that “forget” some structegecalledorgetful functors . In general, these functors
are faithful but not full. For example, distinctogp homomorphismg’,g: A — B are also distinct as
functions, but not every set function between gsoig@ group homomorphism.

For any categor¢ whose objects are sets, perhapsadditional structure and whose morphisms ate se
functions, also perhaps with additional structuhes “most forgetful” functor is the one that forgeill
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structure and thinks of an object simply as a adt @ morphism simply as a set function. This fun¢to
called theunderlying-set functor U: C = Set o€ O

The Category of All Categories

As mentioned earlier, it is tempting to define ttadegory of all categories, but this does not ekst the
collection of all categories must surely be a proglass, being too large to be a set. If this cbibs
formed the objects of a categaly , then would begltw itself, which is not allowed for a class.fact,
even ifC was a set, thehe C  would violate the axidmegularity, which implies that no set can be a
member of itself.

On the other hand, the categ@mCat  ofsaflall  catega@eEs exist. Its objects are the small categories
and its morphisms are the covariant functors betveagegories. Of coursemCat idaage  category and
so does not belong to itself.

Concrete Categories

Despite the two main tenets of category theory rilesd earlier, most common categories do have the
property that their objects are sets whose elen@stSimportant” and whose morphisms are ordinaty s
functions on these elements, usually with sometiahdil structure (such as being group homomorphimms
linear transformations). This leads to the follogvatefinition.

Definition A categoryC isoncrete if there is a faithful functét: C = Set utPmore colloquially,C is

concrete if the following hold:

1) Each objectdA of can be thought of as alsdt( hwisoftenA itse)f . Note that distinct objects
may be thought of as the same set.

2) Each distinct morphisnf: A — B i@ can be thought ofaadistinct set functior'f: FA — I'B
(which is oftenf itself).

3) The identityl4, morphism can be thought of as thentity set function'1: FA — FFA and the
compositionfog inC can be thought of as the composifi'f o F'g of the corresponding set
functionsd

Categories that are not concrete are callestract categories . Mangrete categories have the property
that A isA andF'f ig . This applies, for example, wstrof the previously defined categories, such as
Grp,Rng, Vect andPoset. The categoriRel is an example of a cajethat is not concrete.

In fact, the subject of which categories are camceand which are abstract can be rather involvetves
will not go into it in this introductory book, exgeto remark that all small categories are congratiact
which follows from Yoneda's lemma, to be proveeian the book.

Subcategories

Subcategories are defined as follows.

Definition LetC be a category. AubcategoryD @f is a category for wihice following properties
hold:

1) Obj(D) CObj(C), as classes.
2) ForeveryA,BeD ,

homp (4, B) € hona(A4, B)
and the identity map, i® is the identity map Cinthat is,

(1a)p = (1a)c
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2) Composition irD is the composition frém , thaifis
ffA—B and ¢:B—C
are morphisms irD , then tiie -compogite f isfthe puomitego f .
If equality holds in part for ald, B € D , then the saivegoryD isfull O

Example 11 The categonAbGrp of abelian groups is a full subaate@f the categorysrp , since the
definition of group morphism is independent of wiegtor not the groups involved are abelian. Putharo
way, a group homomorphism between abelian groupsis group homomorphism.

However, the categorRng of rings isnanfull  subcategdrthe categoryAbGrp of abelian groups,
since every ring is an additive abelian group hattall additive group homomorphisnfsR — S between
rings are ring maps. Similarly, the category offatiéntial manifolds with smooth maps is a nonfull
subcategory of the categofpp , since not all contisumaps are smooff.

However, the categorjbGrp  of abelian groups iscafull aigdyory of the categorigng  of rings,
since not all additive group homomorphisfns? — S betwéegs are ring maps. Similarly, the category
of differential manifolds with smooth maps is a fdhsubcategory of the categoiop , since not all
continuous maps are smodih.

The Image of a Functor
Note that ifF:C = D , then the imageéC 6f under the funétothat is, the set
{FA|AeC}
of objects and the set
{Ff|f€hom(4,B)}

of morphisms needot form a subcategorfPof . Thelprolis illustrated in Figure 3.

Figure 3

In this case, the compositidii(g) o F'(f) is not in the im&ge The only way that this can happen is if
the compositioy o f does not exist becafise ¢@nd areompatible for composition. Forgfo f  exists,
then

F(g)o F(f) = F(go [) e F'C

Note that in this example, the object part/of @ mjective, sinceF'(A) = F(C)= X . This is no
coincidence.

Theorem 12If the object part of a functaf: C = D is injective, theC is a subcategory @ , under the
composition inherited fror®

Proof. The only real issue is whether the -compoBige F'f  twofmorphisms inF'C , when it exists, is
also inF'C . But this composite exists if and only if

Ff:FA—FB and F¢g.FB— I'C
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and so the injectivity of' on objects implies that
fifA—-B and ¢B—C
Hencego f existsi@ and so
F(g)o F(f)=F(go f) € FC .

Diagrams

The purpose of @iagram is to describe a portion of &gty C . By “portion” we mean one or more
objects ofC along with some of the arrows conngctirtese objects. let us begin by describing arrindd
definition of a diagram in a category.

As you may know, alirected graph odigraph is a set of points, calfexties together with a set of
directed line segments, calladcs , between (not sacidyg distinct) pairs of nodes. An arc from a nade
itself is called doop .

As shown in Figure 4, diagram ifi consists of a digreyplose nodes are labeled with objects férm and

whose arcs from the node labeléd to the nodeddliglare labeled with morphisms frofn Ao . (In the
figure, the nodes are not drawn—only their labeéscxawn.)

C

A

Figure 4

Now, this informal definition of a diagram sufficésr many purposes. However, we will find it lacffin
when we define the category of all diagrams oftegaryC , and for this important purpose, a morengdr
definition is required. We will give that formal fitgtion now and then connect the formal and infatrm
definitions.

Definition Let andC be categories.ddagram @¢h witldex category7  is a functo7 = C.O0
Often, the index category is a finite category.c8ithe image/(J) is “indexed” by the objects and

morphisms of the index categary , the objectinre adten denoted by lower case letters suclmas ,
p, q. Figure 5 illustrates this definition.

Figure 5

As we remarked earlied,([7) need not be a subcategfatyIn this example/ sends apd to the same
object inC but sincex and are not compatible femposition, the image of need not contain the
compositionJ B o Ja . Thus, the image of a functor simpbptainssome objects of as well asome
morphisms between these objects.
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The Digraph-Based Version of a Diagram

To connect this formal definition of a diagram withe informal definition given earlier, let us slyw
morph the formal definition. First, we give the rfmal definition of a labeled digraph, along with som
terminology that we will need later in the book.

Definition

1) Adirected graph (ordigraph) D consists of a nonempty clag®d) veitices nodes  fod
every ordered paifv,w) of nodes,(a possibly empty.Agetw) of arcs fromv tow . We say that an
arc in A(v,w) leavesv and entersv . Two arcs from to are said to Iparallel The arcs from to
itself are calledoops .

2) The cardinal number of arcs entering a node iBedathein-degree of the node and the cardinal
number of arcs leaving a node is called tha-degree  ofrtbde. The sum of the in-degree and the
out-degree is called thdegree of the node.

3) Alabeled digraph D is a digraph for which each node is labelgdelements of a labeling class and
each arc is labeled by elements of a labeling cldés require that parallel arcs have distinct labeA
labeled digraph isiniquely labeled if no two distinct nodes hawve same labdll

A directed path (or justpath) in a labeled digrapgh  is a sequerfcares of the form
e1 € A(v1,v2),e2 € A(va,v3),...,en—1 € A(vp_1,0n)

where the ending node of one arc is the startirgrad the next arc. THength  of a path is the number of
arcs in the path.

To create what we will call thdigraph version of a diagram7 = C , fivet draw a digraph whose
nodes are labeled with the distinct objects ofititex category7 and whose arcs are labeled with the
distinct morphisms off , subject to the obvious dbod that the morphisnf: A — B labels an arc from
the node labeledl to the node labelgéd . This irredl to as thenderlying digraph  for the diagram.
This is shown on the left in Figure 6.

Then, as shown on the right in Figure 6, we furthbel the nodes and arcs of the digraph withrtrege of
the functorJ . Note that the labels from the indexegory7 are distinct, but the labels frédm are not
necessarily distinct (in this examplép = Jp ). It isazl¢hat the original diagramh is fully recoverable
from the digraph version of the diagram and sotthe versions are equivalent. The digraph view of a
diagram will be useful when we define morphismsieein diagrams.

Jm Jn

[ S ) °
m

=N ]

Ja
—>
03
Jp JB Jg
B

e ___ s e ° °
p B q p q
underlying diagram
graph J:iJ>>C
Figure 6

Note that if the object part of the diagram functbris not injective, then two distinct nodes of the
underlying graph will be labeled with the same ebja C. Although this is useful on occasion (welwite

it precisely once), for most applications of diagsa(at least in this book), is an embedding anthso
nodes and arcs aumiquely labeled.

Now, since the purpose of the objects and morphitise index category is tniquely identify the nodes
and arcs of the underlying digraph, once the digrapdrawn on paper, the nodes and arcs are ugiquel
identified by their location and so the labels frgirare no longer needed. For this reason, theyypireatly
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omitted and we arrive at the informal definitionafliagram given earlier. This is why diagramsaften
drawn simply as in Figure 4.

We will use blackboard lettef3, E,F,... to denote diagrams if we need to emphasize the functor, we
will write

D(J: J = C)

Commutative Diagrams

We consider that any directed path in a diagrafalisled by theeomposition of the morphisms that label
the arcs of the path, taken in the reverse ordappéarance in the path. For example, the labileopath

2L B9¢

in Figure 4isgo f .

A diagramDD in a categor§ is said commute if for eveair (A, B) of objects ilD and any pair of
directed paths froml t8 one of which has length at least twpthe corresponding fedtkls are equal. A
diagram that commutes is called@nmuting diagram commutative diagram

For example, the diagram in Figure 1 commutes since
poT=01 and psoT =09

Note that we exempt the case of two parallel phtil having length one so that a diagram sucheasertle
in Figure 7 can be commutative without forcifig antb be the same morphism. The commutativity
condition for this diagram is thysoe = go e

Figure 7

Special Types of Morphisms

Now let us briefly discuss a topic that may noteerigueuramong category theorists these days, but seems
to this author to be somewhat enlightening for gifieng course in the subject.

For functions, the familiar concepts iofvertibility ~ (both @ided and two-sided) archncelability (both
one-sided and two-sided) are both categorical quscélowever, the familiar concepts of injectivitgd
surjectivity arenot categorical because they invoheelementsof a set.

In the categonySet , morphisms are just set functidiws. this particular category, the concepts of tigh
invertibility, right-cancelability and surjectivitgre equivalent, as are the concepts of left-ifviity, left-
cancelability and injectivity. However, things falpart totally in arbitrary categories. As mentionthe
concepts of injectivity and surjectivity are noteevcategorical concepts and so must go away. Mereov
the concepts of invertibility and cancelability awat equivalent in arbitrary categories!

We will explore the relationship between inveritlgiland cancelability for morphisms in an arbitrary
category. In the exercises, we will ask you to emplthe relationship between these concepts and the
noncategorical concepts of injectivity and surjdtti when they exist in the context of a particula
category.

Let us begin with the formal definitions.

Definition LetC be a category.
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1) A morphismf: A — B isight-invertible if there is a morphigi;e B — A, calledight inverse of
f, for which

fofr=18
2) A morphismf: A — B i¢eft-invertible if there is a morphigm A — B, calleléfainverse of f,
for which
frof=1a

3) A morphisny: A — B imvertible or asomorphism if there is a morphigm: B — A alled the
(two-sided) inverseof f, for which

flof=14 and flof=1y
In this case, the object4 amtl asemorphic  and we wiite B O

Note that thecategorical termisomorphism says nothing about injectiatysurjectivity, for it must be
defined in terms of morphisms only!

In fact, this leads to an interesting observatkor. categories whose objects are sets and whogghisons
are set functions, we can define an isomorphistwinways:

1) (Categorical definition) An isomorphism is a mplism with a two-sided inverse.
2) (Non categorical definition) An isomorphism isigective morphism.

In most cases of algebraic structures, such apgreings or vector spaces, these definitions quéselent.
However, there are cases where only the categat&fadition is correct.

f

P Q
Figure 8

For example, as shown in Figure 8, Iét= {a, b} be a pwosathicha andb are incomparable and let
Q = {0,1} be the posetwith <1 .Let P — @ be defined fiy=10 gind= 1 . Théna bijective
morphism of posets, that is, a bijective monotomg niHowever, it is not an isomorphism of posets!

Proof of the following familiar facts about invessis left to the reader.

Theorem 13

1) Two-sided inverses, when they exist, are unique.

2) If a morphism is both left and right-invertibldnen the left and right inverses are equal and are
(two-sided inverse.

3) If the compositiorf o g of two isomorphisms is defjrieen it is an isomorphism as well and

(fog) =g lof™ O

Definition LetC be a category.
1) A morphisny: A — B isight-cancellable if

gof=hof = g=h

for any parallel morphismg, h: B — C' . A right-cancellable nploism is called arpic ( oep) .
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2) A morphismf: A — B igeft-cancellable , if
fog=foh = g=h

for any parallel morphisms), h:C — A . A left-cancellable mpioism is called amonic ( or a
mono).

In general, invertibility is stronger than cancbildy. We also leave proof of the following to theader.

Theorem 14Let f, g be morphisms in a categaty
1) f left-invertible= f left-cancellablé monic

2) f right-invertible=- f right-cancellablé epjic
3) f invertible= f monic and epic.

Moreover, the converse implications fail in gendthl

It is also true that a morphism can be both montt epic (both right and left cancellable) but failbe an
isomorphism. Klint : Think about the more unusual eXempf categories.) On the other hand, one-sided
cancelability together with one-sided invertibil{ign the other side, of course) do imply an isorhenm.

Theorem 15Let f: A — B be a morphism in a categaty
1) If fis moniq left-cancellabje and right-invertihlthen it is an isomorphism.
2) If f is epic( right-cancellable and left-invertiblen it is an isomorphisiml.

Initial, Terminal and Zero Objects

Anyone who has studied abstract algebra knowsthiwatrivial object (the trivial vector spad®} |, the
trivial group {1}, etc.) often plays a key role in tteory, if only to the point of constantly neediagbe
excluded from consideration. In general categothese are actually two concepts related to thegaltor
“zero” objects.

Definition LetC be a category.

1) Anobjectl € C isnitial if forevert € C ,there is exactly omerphism froml tA .
2) Anobjectl’ iderminal if for everst € C , there is exactlyonorphism fromd @’
3) An object that is both initial and terminal islleal a zero object]

Note that ifC' is either initial or terminal théwoom(C, C') = {1} The following simple result is key.

Theorem 16LetC be a category. Any two initial objectsdn easomorphic and any two terminal objects
in C are isomorphic.

Proof. If A and B are initial, then there are unique mospts f: A — B andg:B — A and so
go fehomA, A) ={1,}. Similarly, fog=1p and soA~ B . A similar proof holds forritenal
objectsd]

Example 17In the categonet, the empty set is the only initibject and each singleton-set is terminal.
Hence,Sethas no zero object. IGrp , the trivial gro{ip} issaozobject]
Zero Morphisms

In the study of algebraic structures, one also emirs “zero” functions, such as the zero linear
transformation and the map that sends each elesfiengroupG to the identity element of another grou
H. Here is the subsuming categorical concept.

Definition LetC be a category with a zero objéct . Any maptyi: A — B that can be factored through
the zero object, that is, for which

f=hopogao

for morphismsi:0 — B ang: A — 0 is calledzero morphism .
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To explain this rather strange looking conceptuketake the case of linear algebra, where the lizerar
transformatiorz: V' — W between vector spaces is usuafipetkto be the map that sends any vector in
V to the zero vector il . This definition is notegdrical because it involves the zelement TWh . To
make it categorical, we interpose thero vector spacd0} . Indeed, zbro transformatios  can be
written as the composition=h o g , where

gV —{0} and h:{0} - W

Here, bothy and are uniquely defined by their dosand ranges, without mention of any elements. Th

point is thatg has no choice but to send everyordatV to the zero vector if0} arid must send the
zero vector in{0} to the zero vectori@ . Usipg @&ndve can avoid having to explicitly mention any

individual vectors!

In the category of groups, the zero morphisms aeeigely the group homomorphisms that map every
element of the domain to the identity element efrdinge. Similar maps exist@Rng  akibd

It is clear that any morphism entering or leaving a zero morphism.

Theorem 18LetC be a category with a zero objéct .

1) There is exactly one zero morphism between amybjects irC .

2) Zero morphisms “absorb” other morphisms, thatiis;: A — B is a zero morphism, then so afe =
andz o g, whenever the compositions make s&hse.

Duality
The concept of duality is prevalent in categoryotiye
Dual or Opposite Categories

For every categorg , we may form a new cate@l3fy alled theopposite category or thedual category
whose objects are the same as thoge of , but whogghisms are “reversed”, that is,

homeo(A, B) = hom (B, A)

For example, in the catego8ef® the morphisms frbno B tare the set functions froB o . This may
seem a bit strange at first, but one must beariimd that morphisms are not necessarily functionthe
traditional sense: By definition, they are simplgreents of the hom-sets of the category. Therefoege is
no reason why a morphism frath B  cannot be atiomdérom B toA .

The rule of composition iI€°° , which we denote by, s difined as follows: If € home(A, B) and
g € home(B, C'), then
goopf € hompa(A, C)
is the morphisny o g € hom:(C, A) . In short
goopf =1fog
Note that(C°?)°P = C and so every category is a dual category
It might occur to you that we have not really inlbged anythinghew , and this is true. Indeed, every

category is a dual category (and conversely), sinisedual to its own dual. But we have introducedew
way to look at old things and this will prove fruit Stay tuned.

The Duality Principle

Let p be a property that a categdty may possesgxmmplep might be the property tidat has arainit
object. We say that a propep$?  idaal property pto if fdrcakegorie€
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C hasp® iff C° hag

Note that this is a symmetric definition and soca@ say that two properties are dual (or not disafne
another. For instance, since the initial object§®hare precisely the terminal object<in , the proes of
having an initial object and having a terminal @bjere dual. The property of being isomorphisaff-dual
thatis,A~ B inC ifandonlyiA ~ B ig° .

In general, ifs is a statement about a categbrjren thedual statement is the same statement stated for
the dual categorg® , but expressed in terms of tiggnal category. For example, consider the statgéme

the category has an initial object

Stated for the dual categaf§® |, thisis

the categorg®® has an initial object

Since the initial objects i6°® are precisely thertieal objects irC , this is equivalent to the statam

the category has a terminal object

which is therefore the dual of the original statatne

A statement and its dual are not, in general, lHbiequivalent. For instance, there are categahashave
initial objects but not terminal objects. Howevésr a special and very common type of conditional
statement, things are different.

LetIl = {g; | i € I} be a set of properties and I#t° = {¢* | i € I} be the seluaf properties. Lep
be a single property. Consider the statement

1) Ifacategory haH ,thenitalso has (abbtedi = p).

Since all categories have the fodff for some cayedop this statement is logically equivalent to the
statement

2) Ifacategorg® haH ,thenitalso has

and this is logically equivalent to

3) Ifacategory haH |, thenitalso h&8 (abbtediH °P = p °P).
The fact that

II=p iff II°= p°

is called theprinciple of duality for categories. Note thallif sé#f-dual hattis, ifII = II°°, then the
principle of duality becomes

II=p iff II=pP

Of course, the empty set of properties is self-dMalreover, the conditiofi = p means that all categorie
possess property . Hence, we deduce that

if all categories possess a propesty , then abgmies also possess any dual property
PP

For example, all categories possess the propeatyrthial objects (when they exist) are isomorplitence,
the principle of duality implies that all terminaljects (when they exist) are isomorphic.
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New Categories From Old Categories

There are many ways to define new categories friohtategories. One of the simplest ways is to thke
Cartesian product of the objects in two categorisere are also several important ways to turn the
morphisms of one category into the objects of agrotiategory.

The Product of Categories

If BandC are categories, we may form gh@duct category 5 x C  , inékpected way. Namely, the
objects of B x C are the ordered pa{iB,C) , whéte is gecvlof B andC' is an object @f . A
morphism fromB x C' toB' x C' is a paiff,g) of morphisms, whefeB — B’ and g:C — C'.
Composition is done componentwise:

(f,9) 0 (h k)= (foh,gok)
A functor F': A x B = C from a product categosy x B to another gatg is called difunctor .
The Category of Arrows

Given a categorg¢ , we can form tbategory of arrowsC—  Cof by takimgobjects to be the morphisms
of C.

f
A—>B

A'g—>B'

Figure 9

A morphism inC™ , that is, enorphism between arrowsis defined as followsmorphism fromf: A — B
tog: A — B’ is apair of arrows

(a:A— A, 3:B— B)
in C for which the diagram in Figure 9 commutest ikafor which
goa=pfof
We leave it to the reader to verify tltat ~ is a gatyg, with composition defined pairwise:
(7,6) o (a, 8) = (yoa,60 )
and with identity morphism§l 4, 15)
Comma Categories

Comma categories form one of the most importarstsels of categories. We will define the simplesnfof
comma category first and then generalize twice.

Arrows Entering (or Leaving) an Object

The simplest form of comma category is definedd®ws. LetC be a category and ldte C . We will
refer toA as thanchor object . The categoryafrows leavingA , denotedAy- C) as for its objects
the set of all pairs

{(B,J:A—B)|Bec}
Note that since a morphism uniquely determinesattomain, we could define the objectg 4f— C) to be

just the morphismsf: A — B themselves but the presentitiefi, which includes the codomains
explicitly, is more traditional.
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A B Y >c

Figure 10

As shown on the left in Figure 10, a morphism(B, f) — (C,g9)  (#h— C) is just a morphism
a: B — C'in C between the codomains for which the trianglemutes, that is, for which

aof=g

The category of arrows leavidgy  is also callewbslice category

Similarly, the categoryC — A) ddrrows entering the anchor objeict faasts objects the pairs
{(B,f:B—A)| Be(C}

and as shown on the right in Figure 10, a morphisrB, f) — (C,g) in (C — A) is a morphism
a: B — C' inC between the domains for which

goa=[
The category of arrows enteriy  is also callstice category

The First Generalization
To generalize this one step (see Figure 11)1€t= D e afunctor and let € D be tlamchor object

Figure 11
As shown on the left in Figure 11, the objectshef tomma categoiy4 — F')  are the pairs
{(C,f:A— FC)|C e}
As to morphisms, as shown on the right in Figureifl1
X=(C,f1:A— FCy) and Y = (Cy, fo: A — F()

are objects ifA — F) , then a morphismX — Y (i#d— F')  is a morphisfl; — C, in C with the
property that

Fao fi = fo

Note that the comma categofyt — C)  defined earlier & (4 — 1), where wherd: is the identity
functor onC . We can also define the comma cate@bry- A) by reversing the arrows.
The Final Generalization

As a final generalization, lef: 8 =D ar@:C =D  be functorthvihe same codomain. As shown in
Figure 12, an object of theomma category(F' — G) is a triple
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(B,C,f:FB— GC)
whereB € B,C € C and is a morphismin

lS"a
CI= D

Figure 12

As to morphisms, as shown in Figure 13,

B
‘ G
C
Figure 13

a morphism from(B, C, f: FB — GC) t¢B',C’, f': FB' — G(C') is a pair of morphisms
(:B— B,p3:C — (")

for which the square commutes, that is,
Gﬂ o f = f, o Fa
The composition of pairs is done componentwise.
Example 19LetC be a category and |16t C = Set  be a set-valued funTtee objects of theategory of
elementsElts(F') are ordered pail®’',a) ,whetee C and I'C . A morphfsifC,a) — (D,b) isa

morphismf:C — D for which’f(a) = b . We leave it to the readeshow that this is a special type of
comma categori/l

Hom-Set Categories
Rather than treating individual arrows as the aisjet a new category, we can treat entire hom-sets
{hom:(4, X) | X € C}

as the objects of a categofyA, —) . As to the morphisefgrring to the left half of Figure 14, let
hom:(A, X) andhom(A,Y) be hom-sets. Then for each morphfsti — Y C in retisea morphism

f7:home(A, X) — hom(A,Y)
defined in words as “follow by ,” that is,
fT(a)=foa
for all « € hom: (4, X).
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A A
hom(A,X) hom.(A)Y)  hom.(X,A) hom.(Y,A)
f- f-
X ﬁ Y

Xf)Y

Figure 14
We can also define a catega@ly— , A)  whose objects are
{hom:(X, ) | X e C}

As shown on the right half of Figure 14, for eacbrphism f: X — Y inC, there is a morphism in
C(—,A) fromhom: (Y, A) andhom(X, A) :

[ :hom (Y, A) — home(X, A)
defined by “precede by ,” that is,
f7(a)=aof

Note that any categoy can be viewed as a hormadegory by adjoining a new initial “object” not@
and defining a new morphisrfy: * — A from to each objéct C Then each object € C can be
identified with its hom-sethom(x, A) . Also, the morphisnfsA — B in C are identified with the
morphisms

f7:hom(x, A) — hongx, B)
of hom-sets.

Exercises

1. Prove that identity morphisms are unique.
2. If I:C = D is fully faithful, prove that

FC~FC = C=C(C'

Indicate how one might define a category withmentioning objects.

A category with only one object is essentialigtia monoid. How?

LetV be a real vector space. Define a categay follows. The objects @¢f are the vector¥in r. Fo
u,v €V, let

ok w

hom(u,v) = {a € R | thereisr 1 such thauu = v}

Let composition be ordinary multiplication. Shovattl is a category.
6. a) Prove thatthe composition of monics is monic
b) Prove thatiff o ¢ is monic, then sogis .
c) Prove thatiff o g is epic, then sofis
7. Find a category with nonidentity morphisms inickhevery morphism is monic and epic, but no
nonidentity morphism is an isomorphism.
8. Prove that any two initial objects are isomocpdnid any two terminal objects are isomorphic.
9. Find the initial, terminal and zero objectsvMiod z andCRng .
10. Find the initial, terminal and zero objectdhia following categories:
a) Setx Set
b) Set”
11. In each case, find an example of a categoty thié given property.
a) No initial or terminal objects.
b) An initial object but no terminal objects.
¢) No initial object but a terminal object.
d) Aninitial and a terminal object that are redmorphic.
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12.

13.
14.

15.

16.

17.

18.

Introduction to Category Theory

LetD be a diagram in a categdty . Show thaktiea smallest subcategdly @f for whizgh isa

diagram inD.

LetC andD be categories. Prove that the prothtegoryC x D is indeed a category.

Lett: B = D and7:C = D be functors with the same codomain.

a) LetR be a commutative ring with unit. Show tthee category R — CRng) is the category®f -
algebras.

b) Lett be aterminal element of a categdry . bbs¢C — t).

Show by example that the following dot  holdyéneral.

a) monic=- injective
Hint: Let C be the category whose objects are theetsibsf the integerg, and for which
hom:(A, B) is the set of allhonnegative set functions fromd # , alowmgh the identity
function whend = B . Consider the absolute value fumctioZ — N.

b) injective= left-invertible
Hint: Consider the inclusion mapZ — Q  between rings.

C) epic= surjective
Hint: Consider the inclusion mapN — Z  between monoids.

d) surjective= right-invertible
Hint: Let C' = (a) be a cyclic group and léf = (a®>) . Consider tl@anical projection map
mC —C/H={H,aH}.

Prove the following:

a) For morphisms between sets, monoids, groupgs on modules, any monic is injectidint  : Let
f: A — X be monic. Extend the relevant algebraic structurel coordinatewise to the cartesian
productA x A and let

S={(a,b) e Ax Al f(a) = f(b)}

Let p;: S — A be projection onto the first coordinate andgde S — A be projection onto the
second coordinate. Applo p; ta,b) € S

b) For morphisms between sets, groups or modulgis, ieplies surjective Hint : suppose that
f:A— X is not surjective and lef =im(f) . Find two distinct mioigms p,q: X — Y that
agree onl , thepo f=qof buyt#q , in contradiction to epicnéSer groups, this is a bit
hard.)

¢) However, for morphisms between monoids or riegé; does not imply surjectivelint : Consider
the inclusion mapg:: N — Z between monoids and the inclusiapx: Z — Q between rings.

(For those familiar with the tensor product) Want to characterize the epimorphism<CiRng , the

category of commutative rings with identity. L&t B € CRng ndaf: A — B. ThenB is al -module

with scalar multiplication defined by

ab = f(a)b

fora € A andb € B . Consider the tensor prodic® B ofthe @@ with itself. Show thaf is
anepicifandonlyii ® b=06% 1 foralb € B Hint : any ring mapA — R efthes anA -module
structure ok .

LetC be a category with a zero object. Showtthafollowing are equivalent:

1) C is aninitial object.

2) C is aterminal object.

3) tc=0cc

4) hom:(C,C) = {0cc}

I mage Factorization Systems

An image factorization systerfor a category is a pa(€, M) where

a)
b)
c)

£ is a nonempty class of epicgof , closed undeposition.
M is a nonempty class of monicsf , closed ucderposition.
Any isomorphism of belongs & and



Categories 23

d) Every morphismf: A — B can be factored fais=moe where M @ad Moreover, this
factorization is unique in the following sensejf & m’ o ¢’ withm’ € M ande’ € E , then there is an
isomorphisn®: I — J for which the following diagram commsit

Figure 15

thatisfoe=¢ andn' o =m .

19. Find an image factorization system &t

20. Find an image factorization system@mp .

21. Prove thaliagonal fill-in theorem: Let, M) be an image factorizationesystLetf: A — C' and
g: B — D be morphisms i@ andletc & ande M , with the squaf@gare 16 commutes.

e
A—>B
/

C——>D
m

Figure 16

Then there exists a morphismB — C' for which the diagiraFigure 16 commutes.

N
/\




